y=1+xe^y求y的二阶导数
y=1+xe^y ==>y'=(1+xe^y )'
==>y'=(xe^y)'
==>y'=1*e^y+xe^y*y'
==>y'(1-xe^y)=e^y
==>y'=e^y/(1-xe^y)
因为y=1+xe^y,则1-xe^y=2-y,得y'=e^y/(2-y)
即dy/dx=e^y/(2-y)
dy/dx=e^y/(2-y)
==>d(dy/dx)/dx=d(e^y/(2-y))
==>d(dy/dx)/dx=[e^y*dy*(2-y)-e^y*(-dy)]/(2-y)^2
因为dy/dx=e^y/(2-y),则
==>d(dy/dx)/dx=[e^2y+e^2y/(2-y)]/(2-y)^2
==>d(dy/dx)/dx=e^2y[1+1/(2-y)]/(2-y)^2
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
y'=e^y+xe^y*y' (1)
y'=e^y/(1-xe^y) (2)
对(1)两边再求导得
y''=e^y*y'+e^y*y'+xe^y*(y')^2+xe^y*y''
把(2)代入上式,解得y''就可以了