已知,如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC 求证:
2个回答
展开全部
取AD中点N,连接MN,则MN是直角梯形ABCD的中位线,
可得:MN∥AB∥CD;
则有:∠NMA = ∠BAM ,∠NMD = ∠CDM ;
(1)
已知:DM平分∠ADC,
即有:∠CDM = ∠ADM ,
可得:∠NMD = ∠CDM = ∠NDM ,
则有:NM = ND = NA ,
可得:∠NAM = ∠NMA = ∠BAM ,
即有:AM平分∠DAB;
(2)
∠AMD
= ∠NMA+∠NMD
= (1/2)[(∠NAM+∠NMA)+(∠NMD+∠NDM)]
= (1/2)(∠NAM+∠AMD+∠NDM)
= (1/2)*180°
= 90°
(3)
延长AM,交DC延长线于点E,
因为,在△ABM和△ECM中,∠AMB = ∠EMC ,BM = CM ,∠ABM = 90° = ∠ECM ,
所以,△ABM ≌ △ECM ,
可得:AB = CE ,∠BAM = ∠CEM ;
因为,∠DAM = ∠BAM = ∠DEM ,
所以,AD = DE = CD+CE = CD+AB 。
可得:MN∥AB∥CD;
则有:∠NMA = ∠BAM ,∠NMD = ∠CDM ;
(1)
已知:DM平分∠ADC,
即有:∠CDM = ∠ADM ,
可得:∠NMD = ∠CDM = ∠NDM ,
则有:NM = ND = NA ,
可得:∠NAM = ∠NMA = ∠BAM ,
即有:AM平分∠DAB;
(2)
∠AMD
= ∠NMA+∠NMD
= (1/2)[(∠NAM+∠NMA)+(∠NMD+∠NDM)]
= (1/2)(∠NAM+∠AMD+∠NDM)
= (1/2)*180°
= 90°
(3)
延长AM,交DC延长线于点E,
因为,在△ABM和△ECM中,∠AMB = ∠EMC ,BM = CM ,∠ABM = 90° = ∠ECM ,
所以,△ABM ≌ △ECM ,
可得:AB = CE ,∠BAM = ∠CEM ;
因为,∠DAM = ∠BAM = ∠DEM ,
所以,AD = DE = CD+CE = CD+AB 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询