
怎样用matlab给一维图像添加噪声 10
2个回答
展开全部
首先图像最少是二维的,图像有是有长宽两个属性组成的矩阵。一维信号是向量.
MATLAB 给图像添加噪声的命令为
imnoise
该函数的基本语法为:
g=imnoise(f,type,parameters)
f为是输入图像。函数imnoise在给图像添加噪声之前,将它转换为范围[0,1]内的double类图像。指定噪声参数时必须考虑到这一点。
g=imnoise(f,'gaussian',m,var)将均值M,方差为var的高斯噪声加到图像f上,默认值为均值是0,方差是0.01的噪声。
g=imnoise(f,'localvar',V)将均值为0,局部方差为V的高斯噪声添加到图像f上,其中V是与f大小相同的一个数组,它包含了每一个点的理想方差值。
g=imnoise(f,'localvar',image_intensity,var)将
均值为0的高斯噪声添加到图像f中,其中噪声的局部方差var是图像f的亮度值的函数。参量image_intensity和var是大小相同的向
量,plot(image_intensity,var)绘制出噪声方差和图像亮度的函数关系。向量image_intensity必须包含范围在
[0,1]内的归一化亮度值。
g=imnoise(f,'salt&pepper',d)用椒盐噪声污染图像f,其中d是噪声密度(即包括噪声值的图像区域的百分比)。因此,大约有d*numel(f)个像素受到影响。默认的噪声密度为0.05。
g=imnoise(f,'speckle',var)用方程g=f+n*f)将乘性噪声添加到图像f上,其中n是均值为0,方差为var的均匀分布的随机噪声,var的默认值是0.04。
g=imnoise(f,'poisson')从数据中生成泊松噪声,而不是将人工的噪声添加
到数据中,为了遵守泊松统计,unit8和unit16类图像的亮度必须和光子的数量相符合。当每个像素的光子数量大于65535时,就要使用双精度图像。亮度值在0到1之间变化,并且对应于光子的数量除以10e12。
MATLAB 给图像添加噪声的命令为
imnoise
该函数的基本语法为:
g=imnoise(f,type,parameters)
f为是输入图像。函数imnoise在给图像添加噪声之前,将它转换为范围[0,1]内的double类图像。指定噪声参数时必须考虑到这一点。
g=imnoise(f,'gaussian',m,var)将均值M,方差为var的高斯噪声加到图像f上,默认值为均值是0,方差是0.01的噪声。
g=imnoise(f,'localvar',V)将均值为0,局部方差为V的高斯噪声添加到图像f上,其中V是与f大小相同的一个数组,它包含了每一个点的理想方差值。
g=imnoise(f,'localvar',image_intensity,var)将
均值为0的高斯噪声添加到图像f中,其中噪声的局部方差var是图像f的亮度值的函数。参量image_intensity和var是大小相同的向
量,plot(image_intensity,var)绘制出噪声方差和图像亮度的函数关系。向量image_intensity必须包含范围在
[0,1]内的归一化亮度值。
g=imnoise(f,'salt&pepper',d)用椒盐噪声污染图像f,其中d是噪声密度(即包括噪声值的图像区域的百分比)。因此,大约有d*numel(f)个像素受到影响。默认的噪声密度为0.05。
g=imnoise(f,'speckle',var)用方程g=f+n*f)将乘性噪声添加到图像f上,其中n是均值为0,方差为var的均匀分布的随机噪声,var的默认值是0.04。
g=imnoise(f,'poisson')从数据中生成泊松噪声,而不是将人工的噪声添加
到数据中,为了遵守泊松统计,unit8和unit16类图像的亮度必须和光子的数量相符合。当每个像素的光子数量大于65535时,就要使用双精度图像。亮度值在0到1之间变化,并且对应于光子的数量除以10e12。

2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐于2018-05-15
展开全部
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询