数学换元法是怎么弄的??

东门春经歌
2020-03-21 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.3万
采纳率:34%
帮助的人:659万
展开全部
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
  换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
  它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
  换元的方法有:局部换元、三角换元、均值换元等。
  换元的种类有:等参量换元、非等量换元
  局部换元  又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。
  例子:求y=x+√(1-x)的值域,
  如果直接入手,有一定难度,但我们可以假设:
  t=√(1-x),反解出:x=1-t^2,(注意:t≥0,"√"代表根号)
  所以原式等价于:y=1-t^2+t=-t^2+t+1(二次函数是我们所熟悉的),其值域为:
  (-∞,5/4]。
  三角换元  应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。
  如求函数y=√1-x^2的值域时,若x∈[-1,1],设x=sin
α
,sinα∈[-1,1
],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。
  又如变量x、y适合条件x
^2+y^2
=r
^2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。
  均值换元  如遇到x+y=2s形式时,设x=
s+t,y=
s-t等等。
  例如:已知a,b为非负实数,m=a^4+b^4,a+b=1,求m的最值
  可令a=1/2-t,b=1/2+t(0≤t≤1/2),带入m,m=2×(t^2+3/4)^2-1,由二次函数性质知m(min)=1/8,m(max)=1.
  等量换元  设
x+y=3

x=t+2,y=v-3
在二重积分中用到
  非等量换元  设
u=(x+y)+3(x+y)
设x+y=s,也叫整体换元法
  应用技巧  我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。
  你可以先观察算式,你可以发现这种要换元法的算式中总是有相同的式子,然后把他们用一个字母代替,算出答案,然后答案中如果有这个字母,就把式子带进去,计算就出来啦
  使用方法  有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。
  注意:换元后勿忘还元.
  例1,在分解(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则 原式=(y+1)(y+2)-12 =y^2+3y+2-12=y^2+3y-10 =(y+5)(y-2) =(x^2+x+5)(x^2+x-2) =(x^2+x+5)(x+2)(x-1).
  例2,(x+5)+(y-4)=8
  (x+5)-(y-4)=4
  令x+5=m,y-4=n
  原方程可写为
  m+n=8
  m-n=4
  解得m=6,n=2
  所以x+5=6,y-4=2
  所以x=1,y=6
  特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。
仉孝乌己
2020-04-20 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.3万
采纳率:33%
帮助的人:769万
展开全部
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
  换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
  它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
  换元的方法有:局部换元、三角换元、均值换元等。
  换元的种类有:等参量换元、非等量换元
  局部换元  又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。
  例子:求y=x+√(1-x)的值域,
  如果直接入手,有一定难度,但我们可以假设:
  t=√(1-x),反解出:x=1-t^2,(注意:t≥0,"√"代表根号)
  所以原式等价于:y=1-t^2+t=-t^2+t+1(二次函数是我们所熟悉的),其值域为:
  (-∞,5/4]。
  三角换元  应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。
  如求函数y=√1-x^2的值域时,若x∈[-1,1],设x=sin
α
,sinα∈[-1,1
],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。
  又如变量x、y适合条件x
^2+y^2
=r
^2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。
  均值换元  如遇到x+y=2s形式时,设x=
s+t,y=
s-t等等。
  例如:已知a,b为非负实数,m=a^4+b^4,a+b=1,求m的最值
  可令a=1/2-t,b=1/2+t(0≤t≤1/2),带入m,m=2×(t^2+3/4)^2-1,由二次函数性质知m(min)=1/8,m(max)=1.
  等量换元  设
x+y=3

x=t+2,y=v-3
在二重积分中用到
  非等量换元  设
u=(x+y)+3(x+y)
设x+y=s,也叫整体换元法
  应用技巧  我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。
  你可以先观察算式,你可以发现这种要换元法的算式中总是有相同的式子,然后把他们用一个字母代替,算出答案,然后答案中如果有这个字母,就把式子带进去,计算就出来啦
  使用方法  有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。
  注意:换元后勿忘还元.
  例1,在分解(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则 原式=(y+1)(y+2)-12 =y^2+3y+2-12=y^2+3y-10 =(y+5)(y-2) =(x^2+x+5)(x^2+x-2) =(x^2+x+5)(x+2)(x-1).
  例2,(x+5)+(y-4)=8
  (x+5)-(y-4)=4
  令x+5=m,y-4=n
  原方程可写为
  m+n=8
  m-n=4
  解得m=6,n=2
  所以x+5=6,y-4=2
  所以x=1,y=6
  特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
军翱0DR
2012-09-15 · TA获得超过106个赞
知道答主
回答量:55
采纳率:100%
帮助的人:20.1万
展开全部
y=sin(2x+1)
解答: 设t=2x+1,u=sint
--->y'=u't'=(sint)'t'=cost*2=2cos(2x+1)
就如这样的,换元的目的就是为了使运算式子简单,运算起来更方便
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友05e1f35
2012-09-15 · TA获得超过198个赞
知道小有建树答主
回答量:241
采纳率:0%
帮助的人:57.4万
展开全部
  y=sin(2x+1)
  解答: 设t=2x+1,u=sint将原式替换为y=u=sint
y'=u' t'=(sint)' t'=cost*2=2cos(2x+1)
以对式子求导这样的,换元的目的就是为了使运算式子简单,让式子的结构清晰明了,运算起来更方便,不会因式子的繁杂忘记对部分进行求导
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
查晓兰hT
2012-09-28 · TA获得超过549个赞
知道小有建树答主
回答量:725
采纳率:0%
帮助的人:358万
展开全部
换元就是用一个字母代替一个多项式,便于查看计算,其实化简式子主要就是换元法和主元法,其目的都是为了简便化简,希望对你有所帮助
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式