极限函数的唯一性怎么证明

limXn=alimXn=b求证ab相等唯一性的末尾可不可以写成a减b是零,所以二者相等,唯一性最后... lim Xn=a lim Xn=b 求证ab相等
唯一性的末尾可不可以写成a减b是零,所以二者相等,唯一性最后
展开
林清他爹
2018-12-15 · TA获得超过3172个赞
知道小有建树答主
回答量:266
采纳率:100%
帮助的人:14.8万
展开全部
证明如下:
假设存在a,b两个数都是函数f(x)当x→x。的极限,且a<b,根据极限的柯西定义,有如下结论:
任意给定ε>0(要注意,这个ε是对a,b都成立)。
总存在一个δ1>0,当0<丨x-x。丨<δ1时,使得丨f(x)-a丨<ε成立。
总存在一个δ2>0,当0<丨x-x。丨<δ2时,使得丨f(x)-b丨<ε成立。
上面的不等式可以等价变换为a-ε<f(x)<a+ε①和b-ε<f(x)<b+ε②。
令δ=min{δ1,δ2},当0<丨x-x。丨<δ时。①,②两个不等式同时成立。
因为①,②两个不等式同时成立,所以①式右端必定大于或等于②式左端。
即:b-ε≤a+ε,移项得:(b-a)/2≤ε,因为(b-a)/2是一个确定大小的正数,所以这个结论与极限的定义:“ε可以任意小”矛盾,所以假设不成立,因此不存在a,b两个数都是f(x)的极限,除非a=b矛盾才不会出现。
倘若是x趋于无穷大时的唯一性证明可以参看高数书数列极限唯一性证明,证法完全一样。
证毕。
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
terminator_888
推荐于2017-11-25 · TA获得超过8792个赞
知道大有可为答主
回答量:1680
采纳率:100%
帮助的人:809万
展开全部
唯一性:
lim Xn=a lim Xn=b
由定义:
任意ε>0,存在N1>0,当n>N1,有|Xn-a|<ε/2
对上述ε>0,存在N2>0,当n>N2,有|Xn-b|<ε/2
因此,取N=max{N1,N2}
对上述ε>0,存在N>0,当n>N,有|Xn-a|<ε且|Xn-b|<ε/2
而,|b-a|=|Xn-a-Xn+b|<|Xn-a|+|Xn-b|<ε/2+ε/2=ε
故,a=b

保号性:
lim xn=a>0
由定义:
任意ε>0,存在N>0,当n>N,有|xn-a|<ε
由ε的任意性可知,上定义对任何ε都成立
不妨取ε=a/2
则有,|xn-a|<a/2
即,a/2<xn<3a/2
故有:
存在N>0,当n>N,有xn>a/2
同理可证a<0的情况

保号性的意义:
如果有一个数列an,其极限lim an=a>0
那么,我们可以知道,必定存在一个N,当n>N,所有的an>0
小于0同理

有不懂欢迎追问
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式