2个回答
展开全部
俊狼猎英团队为您解答
分两步进行。
①先求∠BAC:
∠PCD=∠PBC+∠BPC,
即1/2∠ACD=40°+1/2∠ABC,
∴∠ACD=∠ABC+80°,
又∠ACD=∠ABC+∠BAC,
∴∠BAC=80°;
②证P在∠BAC的外角平分线上:
过P分别作PM⊥BC于M,PN⊥AC于N,PQ⊥BA的延长线于Q,
由角平分线性质定理得:PM=PN,PM=PQ,
∴PN=PQ,
∴P在∠QAC的角平分线上,
∴∠CAP=1/2(180°-∠BAC)=50°。
欢迎追问。
分两步进行。
①先求∠BAC:
∠PCD=∠PBC+∠BPC,
即1/2∠ACD=40°+1/2∠ABC,
∴∠ACD=∠ABC+80°,
又∠ACD=∠ABC+∠BAC,
∴∠BAC=80°;
②证P在∠BAC的外角平分线上:
过P分别作PM⊥BC于M,PN⊥AC于N,PQ⊥BA的延长线于Q,
由角平分线性质定理得:PM=PN,PM=PQ,
∴PN=PQ,
∴P在∠QAC的角平分线上,
∴∠CAP=1/2(180°-∠BAC)=50°。
欢迎追问。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |