在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),
展开全部
解:(1)EG=CG,EG⊥CG.
(2)EG=CG,EG⊥CG.
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
由图(3)可知,△BEF为等腰直角三角形,∴BE=EF,
∴EF=CM.
∵∠EMC=90°,FG=DG,
∴MG=1 2 FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
∴∠F=45°.
又FG=DG,
∠CMG=1 2 ∠EMC=45°,
∴∠F=∠GMC.
∴△GFE≌△GMC.
∴EG=CG,∠FGE=∠MGC.
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG.
(2)EG=CG,EG⊥CG.
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
由图(3)可知,△BEF为等腰直角三角形,∴BE=EF,
∴EF=CM.
∵∠EMC=90°,FG=DG,
∴MG=1 2 FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
∴∠F=45°.
又FG=DG,
∠CMG=1 2 ∠EMC=45°,
∴∠F=∠GMC.
∴△GFE≌△GMC.
∴EG=CG,∠FGE=∠MGC.
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)EG=CG,EG⊥CG. (2分)
(2)EG=CG,EG⊥CG. (2分)
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
由图(3)可知,△BEF为等腰直角三角形,∴BE=EF,
∴EF=CM.
∵∠EMC=90°,FG=DG,
∴MG=1 2 FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
∴∠F=45°.
又FG=DG,
∠CMG=1 2 ∠EMC=45°,
∴∠F=∠GMC.
∴△GFE≌△GMC.
∴EG=CG,∠FGE=∠MGC. (2分)
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG. (2分)
(2)EG=CG,EG⊥CG. (2分)
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
由图(3)可知,△BEF为等腰直角三角形,∴BE=EF,
∴EF=CM.
∵∠EMC=90°,FG=DG,
∴MG=1 2 FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
∴∠F=45°.
又FG=DG,
∠CMG=1 2 ∠EMC=45°,
∴∠F=∠GMC.
∴△GFE≌△GMC.
∴EG=CG,∠FGE=∠MGC. (2分)
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG. (2分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询