高中数学三角函数
若f(x)在区间[-π/3,0]上单调递减,且恰好能取到f(x)的最小值2,求a和b的值 展开
(1)f[x]=sin[x+π/6]+sin[x-π/6]+cosx+a
=sinxcos[π/6]+cosxsin[π/6]+sinxcos[π/6]-cosxsin[π/6]+cosx+a
=2sinxcos[π/6]+cosx+a
=√3sinx+cosx+a
=2sin[x+π/6]+a
当sin[x+π/6]=1,f[x]取到最大值为f[x]max=2+a=1
a=-1
(2)f[x]=2sin[x+π/6]-1
令u=x+π/6,则sinu 的单调增区间是[-π/2+2kπ,π/2+2kπ] (k∈Z)
则sin(x+π/6]的单调增区间是[-π/2+2kπ-π/6,π/2+2kπ-π/6](k∈Z)
则f[x]的单调增区间为[-2π/3+2kπ,π/3+2kπ] ,(π∈Z)
(3)f[x]=2sin[x+π/6]-1>=0
sin[x+π/6]>=1/2
如图在[0,2π]一个周期里满足sin[x+π/6]>=1/2的x范围是
π/6<= x+π/6<=5π/6
则所有周期内 x满足 π/6+2kπ<= x+π/6<=5π/6+2kπ
化简得 2kπ<=x<=2π/3+2kπ,(k∈Z)
则f[x]>=0成立的X的取值集为{x|2kπ<=x<=2π/3+2kπ,(k∈Z)}
=2sinxcosπ/6+acosx+b
=√3sinx+acosx+b
=√(3+a^2)sin(x+θ)+b (sinθ=a/√(3+a^2),cosθ=√3/√(3+a^2),
f(x)在区间[-π/3,0]上单调递增,且恰好能够取到f(x)的最小值2
∴-π/3+θ=-π/2,b-√(3+a^2)=2
θ=-π/6
a=-1,b=2+2=4