求解一道初三数学题,望高人指点,详细看
展开全部
(n+1)²+n²+n²(n+1)²
=(n+1)²-2n(n+1)+n²+2n(n+1)+n²(n+1)²
=[(n+1)-n]²+2n(n+1)+n²(n+1)²
=1+2n(n+1)+n²(n+1)²
=(n²+n+1)²
1+1/n²+1/(n+1)²
=[(n+1)²+n²+n²(n+1)²]/n²(n+1)²
=(n²+n+1)²/(n²+n)²
所以√[1+1/n²+1/(n+1)²]
=(n²+n+1)/(n²+n)
=1+1/(n(n+1)
=1+1/n-1/(n+1)
所以A=1+1-1/2+1+1/2-1/3+……+1+1/2005-1/2006
=1*2005+(1-1/2006)
=2005+2005/2006
接近2006
=(n+1)²-2n(n+1)+n²+2n(n+1)+n²(n+1)²
=[(n+1)-n]²+2n(n+1)+n²(n+1)²
=1+2n(n+1)+n²(n+1)²
=(n²+n+1)²
1+1/n²+1/(n+1)²
=[(n+1)²+n²+n²(n+1)²]/n²(n+1)²
=(n²+n+1)²/(n²+n)²
所以√[1+1/n²+1/(n+1)²]
=(n²+n+1)/(n²+n)
=1+1/(n(n+1)
=1+1/n-1/(n+1)
所以A=1+1-1/2+1+1/2-1/3+……+1+1/2005-1/2006
=1*2005+(1-1/2006)
=2005+2005/2006
接近2006
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询