函数w=1/z,把z平面上x^2+(y-1)^2=4映射成w平面上怎样的曲线?
z=1/w=1/(u+iv)=(u-iv)/(u^2+v^2)z=x+iyx=u/(u^2+v^2),y=-v/(u^2+v^2),(u/(u^2+v^2))^2+(-v...
z=1/w=1/(u+iv)=(u-iv)/(u^2+v^2)
z=x+iy
x=u/(u^2+v^2),
y=-v/(u^2+v^2),
(u/(u^2+v^2))^2+(-v/(u^2+v^2)-1)^2=4
所求曲线方程为:u^2+(u^2+v^2+v)^2=4(u^2+v^2)^2
其中u^2+(u^2+v^2+v)^2=4(u^2+v^2)^2何解? 展开
z=x+iy
x=u/(u^2+v^2),
y=-v/(u^2+v^2),
(u/(u^2+v^2))^2+(-v/(u^2+v^2)-1)^2=4
所求曲线方程为:u^2+(u^2+v^2+v)^2=4(u^2+v^2)^2
其中u^2+(u^2+v^2+v)^2=4(u^2+v^2)^2何解? 展开
2个回答
展开全部
z=1/w=1/(u+iv)=(u-iv)/(u^2+v^2)
z=x+iy
x=u/(u^2+v^2),............................u^2+v^2>0
y=-v/(u^2+v^2),
(u/(u^2+v^2))^2+(-v/(u^2+v^2)-1)^2=4
u^2+(u^2+v^2+v)^2=4(u^2+v^2)^2
u^2+v^2+2v(u^2+v^2)+(u^2+v^2)^2=4(u^2+v^2)^2
(1+2v)(u^2+v^2)=3(u^2+v^2)^2
1+2v=3(u^2+v^2)
u^2+(v-1/3)^2=4/9
是w平面上以(0,1/3)为圆心,2/3为半径的圆
z=x+iy
x=u/(u^2+v^2),............................u^2+v^2>0
y=-v/(u^2+v^2),
(u/(u^2+v^2))^2+(-v/(u^2+v^2)-1)^2=4
u^2+(u^2+v^2+v)^2=4(u^2+v^2)^2
u^2+v^2+2v(u^2+v^2)+(u^2+v^2)^2=4(u^2+v^2)^2
(1+2v)(u^2+v^2)=3(u^2+v^2)^2
1+2v=3(u^2+v^2)
u^2+(v-1/3)^2=4/9
是w平面上以(0,1/3)为圆心,2/3为半径的圆
来自:求助得到的回答
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询