已知x=二分之一(根号7+根号5)y=二分之一(根号7-根号5)求x分之y+y分之x
展开全部
解:依题设有x=(√7+√5)/2 , y=(√7-√5)/2
所以,原式=y/x + x/y 通分
=(x²+y²)/(xy) 配方
=[(x+y)²-2xy]/(xy) 整体代入
={ [(√7+√5)/2+(√7-√5)/2]²-2×(√7+√5)/2×(√7-√5)/2 }/[(√7+√5)/2×(√7-√5)/2]
=[ (√7)²-(√7²-√5²)/2 ]/[(√7²-√5²)/4]
=[ 7-(7-5)/2 ]/[(7-5)/4]
=(7-1)/(1/2)
=6×2
所以,原式=y/x + x/y 通分
=(x²+y²)/(xy) 配方
=[(x+y)²-2xy]/(xy) 整体代入
={ [(√7+√5)/2+(√7-√5)/2]²-2×(√7+√5)/2×(√7-√5)/2 }/[(√7+√5)/2×(√7-√5)/2]
=[ (√7)²-(√7²-√5²)/2 ]/[(√7²-√5²)/4]
=[ 7-(7-5)/2 ]/[(7-5)/4]
=(7-1)/(1/2)
=6×2
展开全部
x=(√7+√5)/2 , y=(√7-√5)/2
原式=y/x + x/y 通分
=(x²+y²)/(xy)
=[(x+y)²-2xy]/(xy)
={ [(√7+√5)/2+(√7-√5)/2]²-2×(√7+√5)/2×(√7-√5)/2 }/[(√7+√5)/2×(√7-√5)/2]
=[ (√7)²-(√7²-√5²)/2 ]/[(√7²-√5²)/4]
=[ 7-(7-5)/2 ]/[(7-5)/4]
=(7-1)/(1/2)
=6×2
=12
原式=y/x + x/y 通分
=(x²+y²)/(xy)
=[(x+y)²-2xy]/(xy)
={ [(√7+√5)/2+(√7-√5)/2]²-2×(√7+√5)/2×(√7-√5)/2 }/[(√7+√5)/2×(√7-√5)/2]
=[ (√7)²-(√7²-√5²)/2 ]/[(√7²-√5²)/4]
=[ 7-(7-5)/2 ]/[(7-5)/4]
=(7-1)/(1/2)
=6×2
=12
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
fgff
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询