用数学归纳法证明不等式
1/n+1/(n+1)+1/(n+2)+...+1/(n^2)>1(n>1)求个详细解题步骤,谢谢了...
1/n+1/(n+1)+1/(n+2)+...+1/(n^2)>1(n>1)
求个详细解题步骤,谢谢了 展开
求个详细解题步骤,谢谢了 展开
展开全部
n=2时,左边=1/2+1/3+1/4>1/2+1/4+1/4=1
假设n=k时结论成立,即1/k+1/(k+1)+...+1/(k²)>1
n=k+1时左边=1/(k+1)+1/(k+2)+...+1/(k+1)²
=[1/k+1/(k+1)+...+1/(k²)-1/k]+[1/(k²+1)+1/(k²+2)+...+1/(k+1)²]>(1-1/k)+(2k+1)/(k+1)²,
只需证明(2k+1)/(k+1)²>1/k,整理得k²>1+k,对于k≥2有k²≥2k>k+1成立,故原式成立
假设n=k时结论成立,即1/k+1/(k+1)+...+1/(k²)>1
n=k+1时左边=1/(k+1)+1/(k+2)+...+1/(k+1)²
=[1/k+1/(k+1)+...+1/(k²)-1/k]+[1/(k²+1)+1/(k²+2)+...+1/(k+1)²]>(1-1/k)+(2k+1)/(k+1)²,
只需证明(2k+1)/(k+1)²>1/k,整理得k²>1+k,对于k≥2有k²≥2k>k+1成立,故原式成立
展开全部
当n=2时 左边=1/2+1/3+1/4=13/12>1=右边
假设n=k(k≥2)时成立即 1/k+1/(k+1)+1/(k+2).。。。1/(k^2)>1
则当n-k+1时 左边=1/(k+1)+1/(k+2)+。。。+1/(k^2)+1/(k^2+1)+.。。。+1/(k+1)^2=1/k+1/(k+1)+1/(k+2).。。。1/(k^2)+1/(k^2+1)+.。。。+1/(k+1)^2-1/k
此时题目转换成证明1/(k^2+1)+.。。。+1/(k+1)^2-1/k>0
当k≥2时,显然k>1+1/k 所以 2k+1>k+2+1/k =(k+1)^2/k 不等式两边同时除以(k+1)^2得
(2k+1)/(k+1)^2>1/k 因为1/(k^2+1)+.。。。+1/(k+1)^2>1/(k+1)^2*(2k+1)=(2k+1)/(k+1)^2>1/k
所以左边=1/(k+1)+1/(k+2)+。。。+1/(k^2)+1/(k^2+1)+.。。。+1/(k+1)^2=1/k+1/(k+1)+1/(k+2).。。。1/(k^2)+1/(k^2+1)+.。。。+1/(k+1)^2-1/k>1
即当n=k+1时不等式也成立,所以原命题成立
从1/(k^2+1)到1/(k+1)^2共有 2k+1项,把每一项都看成是最后一项的话,和是会变小的所以会有
1/(k^2+1)+.。。。+1/(k+1)^2>1/(k+1)^2*(2k+1)
假设n=k(k≥2)时成立即 1/k+1/(k+1)+1/(k+2).。。。1/(k^2)>1
则当n-k+1时 左边=1/(k+1)+1/(k+2)+。。。+1/(k^2)+1/(k^2+1)+.。。。+1/(k+1)^2=1/k+1/(k+1)+1/(k+2).。。。1/(k^2)+1/(k^2+1)+.。。。+1/(k+1)^2-1/k
此时题目转换成证明1/(k^2+1)+.。。。+1/(k+1)^2-1/k>0
当k≥2时,显然k>1+1/k 所以 2k+1>k+2+1/k =(k+1)^2/k 不等式两边同时除以(k+1)^2得
(2k+1)/(k+1)^2>1/k 因为1/(k^2+1)+.。。。+1/(k+1)^2>1/(k+1)^2*(2k+1)=(2k+1)/(k+1)^2>1/k
所以左边=1/(k+1)+1/(k+2)+。。。+1/(k^2)+1/(k^2+1)+.。。。+1/(k+1)^2=1/k+1/(k+1)+1/(k+2).。。。1/(k^2)+1/(k^2+1)+.。。。+1/(k+1)^2-1/k>1
即当n=k+1时不等式也成立,所以原命题成立
从1/(k^2+1)到1/(k+1)^2共有 2k+1项,把每一项都看成是最后一项的话,和是会变小的所以会有
1/(k^2+1)+.。。。+1/(k+1)^2>1/(k+1)^2*(2k+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询