
已知sinα是方程5x^2-7x-6=0的根
求〔sin(-α-3/2π)sin(3/2π-α)*tan^2(2π-α)〕/〔cos(π/2-α)cos(π/2+α)*cos(π-α)〕...
求〔sin(-α-3/2π)sin(3/2π-α)*tan ^2(2π-α)〕/〔cos(π/2-α)cos(π/2 +α)*cos(π-α)〕
展开
3个回答
展开全部
〔sin(-α-3/2π)sin(3/2π-α)*tan(2π-α)〕/〔cos(π/2-α)cos(π/2+α)*cos(π-α)〕
=cosαcosαtanα/sinαsinαcosα
=sinα/sin²α
=1/sinα
5x²-7x-6=0
(5x+3)(x-2)=0
x=-3/5或x=2(舍去,|sinα|必须<=1)
所以
原式=1/(-3/5)=-5/3
=cosαcosαtanα/sinαsinαcosα
=sinα/sin²α
=1/sinα
5x²-7x-6=0
(5x+3)(x-2)=0
x=-3/5或x=2(舍去,|sinα|必须<=1)
所以
原式=1/(-3/5)=-5/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询