高压变频器的工作原理过程

 我来答
扈桃税昭君
2019-10-30 · TA获得超过3659个赞
知道大有可为答主
回答量:3055
采纳率:34%
帮助的人:179万
展开全部
一、高压变频器的基本构成:
1、高压变频器的构成:
内部是由十八个相同的单元模块构成,每六个模块为一组,分别对应高压回路的三相,单元供电由移相切分变压器进行供电。(原理图)
2、功率单元构成:
功率单元是一种单相桥式变换器,由输入切分变压器的副边绕组供电。经整流、滤波后由4个IGBT以PWM方法进行控制,产生设定的频率波形。变频器中所有的功率单元,电路的拓扑结构相同,实行模块化的设计。其控制通过光纤发送。
来自主控制器的控制光信号,经光/电转换,送到控制信号处理器,由控制电路处理器接收到相应的指令后,发出相应设的IGBT的驱动信号,驱动电路接到相应的驱动信号后,发出相应的驱动电压送到IGBT控制极,操作IGBT关断和开通,输出相应波形。功率单元中的状态信息将被收集到应答信号电路中进行处理,集中后经电/光转换器变换,以光信号向主控制器发送。
二、高压变频器运行原理:
高压变频器的每个功率单元相当于一个三电平的二相输出的低压变频器,通过叠加成为高压三相交流电,变频器中点与电动机中性点不连接,变频器输出实际上为线电压,由A相和B相输出电压产生的UAB输出线电压可达6000V,为25阶梯波。如下图所示,为输出的线电压和相电压的阶梯波形,UAB不仅具有正弦波形而且台阶数也成倍增加,因而谐波成分及dV/dt均较小。
三、多电平单元串联叠加高压变频器在运行后,将输入的工频的三相高压交流电转化为可以进行频率可调节的三相交流电,其电压和频率按照V/F的设定进行相应的调节,保持电机在不同的频率下运行,而定子磁心中的主磁通保持在额定水准,提高电机的转换效率。
在变频器输入侧,由于变频器多个副边绕组的均匀位移,如6KV输出时共有+250、+150、+50、-50、-150、-250共6种绕组,变频器原边电流中对应的电流成分也相互均匀位移,构成等效36脉动整流线路,变流转换产生的谐波都相互抵消,湮灭。工作时的功率因数达0.95以上,不需要附加电源滤波器或功率因数补偿装置,也不会与现有的补偿电容装置发生谐振,对同一电网上运行的电气设备没有任何干扰。
四、高压变频器的性能特点:
1、应用范围:
调速范转宽,可以从零转速到工频转速的范围内进行平滑调节。
在大电机上能实现小电流的软启动,启动时间和启动的方式可以根据现场工况进行调整。
频率的调整是根据电机在低频下的压频比系数进行电压和频率的输出,在低转速下,电机不仅是发热量低,而且输入电压低,将使电机绝缘老化速度降低。
2、技术新颖
串联多重化叠加技术的应用实现了真正意义的高-高电力变换,无需降压升压变换,降低了装置的损耗,提高了可靠性,解决了高压电力变换的困难。串联多重化叠加技术的应用还为实现纯正弦波、消除电网谐波污染开辟了崭新的途径。
移相变压器

移相变压器是单元串联型多电平高压大功率变频器中的关键部件之一。

用低压电力电子元件做高压变频器通常有两种方法:一是用低压元件直接串联,另一种方法是用独立的功率单元串联,称为单元串联型多电平高压大功率变频器。后者因为比前者有更多的优点而成为高压大功率变频器的主流。

以6kV变频器为例:

它的每相由6个独立的、额定电压为Ve=577V(峰值为816V)的低压功率单元串联而成,输出相电压为3464V线电压可达6000V左右。每个功率单元承受全部输出电流但只提供1/6相电压和1/18的输出功率。

每个功率单元分别由变压器的一组二次绕组供电,功率单元之间以及变压器二次绕组之间相互绝缘。

很明显移相变压器在该变频器中起了两个关键的作用:一是电气隔离作用才能使各个变频功率单元相互独立从而实现电压迭加串联,二是移相接法可以有效地消除35次以下的谐波。(理论上可以消除6n-1次以下的谐波,
n为单元级数)
我是小学晓
2012-09-19
知道答主
回答量:31
采纳率:0%
帮助的人:11.6万
展开全部
高压变频器工作原理
高压变频器是一种串联叠加性高压变频器,即采用多台单相三电平逆变器串联连接,输出可变频变压的高压交流电。按照电机学的基本原理,电机的转速满足如下的关系式:n=(1一s)60f/p=n。×(1一s)(P:电机极对数;f:电机运行频率;s:滑差)从式中看出,电机的同步转速n。正比于电机的运行频率(n。=60fp),由于滑差s一般情况下比较小(0-0.05),电机的实际转速n约等于电机的同步转速n。,所以调节了电机的供电频率f,就能改变电机的实际转速。电机的滑差s和负载有关,负载越大则滑差增加,所以电机的实际转速还会随负载的增加而略有下降。

  变频器本身由变压器柜、功率柜、控制柜三部分组成。三相高压电经高压开关柜进入,经输入降压、移相给功率单元柜内的功率单元供电,功率单元分为三组,一组为一相,每相的功率单元的输出首尾相串。主控制柜中的控制单元通过光纤时对功率柜中的每一功率单元进行整流、逆变控制与检测,这样根据实际需要通过操作界面进行频率的给定,控制单元把控制信息发送到功率单元进行相应得整流、逆变调整,输出满足负荷需求的电压等级。

  1 移相式变压器

  移相变压器的副边绕组分为三组,构成X脉冲整流方式;这种多极移相叠加的整流方式可以大大改善网侧的电流波形,使负载下的网侧功率因数接近1。另外,由于副边绕组的独立性,使每个功率单元的主回路相对独立,这样大大提高了可靠性。

  2 智能化功率单元

  所有的功率模块均为智能化设计具有强大的自诊断指导能力,一旦有故障发生时,功率模块将故障信息迅速返回到主控单元中,主控单元及时将主要功率元件IGBT关断,保护主电路;同时在中文人机界面上精确定位显示故障位置、类别。在设计时已将一定功率范围内的单元模块进行了标准化考虑,以此保证了单元模块在结构、功能上的一致性。当模块出现故障时,在得到报警器报警通知后,可在几分钟内更换同等功能的备用模块,减少停机时间。

  6kV电网电压经过副边多重化的隔离变压器降压后给功率单元供电,功率单元为三相输入,单相输出的交直流PWM电压源型逆变器结构,相邻功率单元的输出端串联起来,形成Y接结构,实现变压变频的高压直接输出,供给高压电动机。6kV电压等级的高压变频器,每相由六个额定电压为600V的功率单元串联而成,输出相电压最高可达3464V,线电压达6000V左右。改变每相功率单元的串联个数或功率单元的输出电压等级,就可以实现不同电压等级的高压输出。每个功率单元分别由输入变压器的一组副边供电,功率单元之间及变压器二次绕组之间相互绝缘。二次绕组采用延边三角形接法,实现多重化,以达到降低输入谐波电流的目的。6kV电压等级的变频器,给18个功率单元供电的18个二次绕组每三个一组,分为6个不同的相位组,互差10度电角度,形成36脉冲的整流电路结构,输入电流波形接近正弦波,这种等值裂相供电方式使总的谐波电流失真大为减少,变频器输入的功率因数可达到0.95以上。

3 双DSP控制系统

  主控器的核心为双DSP的CPU单元,使指令能在纳秒级完成。这样CPU单元可以很快的根据操作命令、给定信号及其它输入信号,计算出控制信息及状态信息,快速的完成对功率单元的监控。

  4 GPRS远程监控
  通过FTU配网装置,将采集到的'实际频率'、'定子电压'、'定子电流'、'压力'以及系统运行的状态量和报警信息等等数据,利用GPRS网络发送到后台服务器,后台服务器可根据所收到的数据信息的分析结果作出相应的处理操作,包括监测工作状态、系统运行参数、电流、电压的超标报警,这样就可以对现场进行实时监控,以确定安全情况和运行情况。大幅提高了系统运行的可靠性、操作方式更加灵活、同时也减少了维护费用。

参考资料: 百度文库啊

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
jaunli
推荐于2016-06-20
知道答主
回答量:69
采纳率:0%
帮助的人:23.8万
展开全部
变频器工作原理
主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。 它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。
整流器
  最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。
平波回路
  在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。
逆变器
  同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。   
控制电路
是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。   
(1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。   
(2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。   
(3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。   (4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。   
(5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
李义劳光济
2019-09-04 · TA获得超过3987个赞
知道大有可为答主
回答量:3174
采纳率:32%
帮助的人:228万
展开全部
高压变频器工作原理

时间:08-02-28  来源:索肯和平(上海)电气
  进入论坛
  0

【字体大小:大

小】
关键词:
高压变频器
工作原理
变频器
索肯和平
Solcom&Hapn,中国驰名商标,获二十多项国家专利,三峡、奥运工程供应商,提供高低压变频器,高中低压固态启动器(软起动柜),开关柜,配电箱,配电柜,工控成套设备的研发、生产和服务。电话:021-51271111。
高压变频器(在国外称中压变频器)自上个世纪九十年代中期开始在国内推广,经过十年的发展,今天已经普遍为市场所接受,估计今年的市场容量在10亿到20亿元人民币之间。本文将从产品技术和市场两方面分析高压变频器的特点。
一、高压变频器的产品和技术特点
上世纪八十年代到九十年代初,高压电机要实现调速,主要采用三种方式:(1)液力耦合器方式。即在电机和负载之间串入一个液力耦合装置,通过液面的高低调节电机和负载之间耦合力的大小,实现负载的速度调节;(2)串级调速。串级调速必须采用绕线式异步电动机,将转子绕组的一部分能量通过整流、逆变再送回到电网,这样相当于调节了转子的内阻,从而改变了电动机的滑差;由于转子的电压和电网的电压一般不相等,所以向电网逆变需要一台变压器,为了节省这台变压器,现在国内市场应用中普遍采用内馈电机的形式,即在定子上再做一个三相的辅助绕组,专门接受转子的反馈能量,辅助绕组也参与做功,这样主绕组从电网吸收的能量就会减少,达到调速节能的目的。(3)高低方式。由于当时高压变频技术没有解决,就采用一台变压器,先把电网电压降低,然后采用一台低压的变频器实现变频;对于电机,则有两种办法,一种办法是采用低压电机;另一种办法,则是继续采用原来的高压电机,需要在变频器和电机之间增加一台升压变压器。
上述三种方式,发展到目前都是比较成熟的技术。液力耦合器和串级调速的调速精度都比较差,调速范围较小,维护工作量大,液力耦合器的效率相比变频调速还有一定的差距,所以这两项技术竞争力已经不强了。至于高低方式,能够达到比较好的调速效果,但是相比真正的高压变频器,还有如下缺点:效率低,谐波大,对电机的要求比较严格,功率较大时(500KW以上),可靠性较低。高低方式的主要优势在于成本较低。
目前,主流的高压变频器产品主要有三种类型:
(1)
电流源型。如图1。电流源型逆变部分采用SGCT直接串联解决耐压问题,直流部分用电抗器储存能量,目前的技术水平可以做到7.2KV输出电压,所以适应国内大部分电压为6KV这一现状。电流源型变频器输入侧的功率因数比较低,电抗器的发热量较大,效率比电压源型变频器低,由于采用电流控制,输出滤波器的设计比较麻烦,而两电平变频器的共模电压和谐波、dv/dt问题较突出,所以对电机的要求较高。虽然电流源型变频器有可回馈能量的优点,但是需要回馈能量的负载毕竟不是太多,尤其是通用型的变频器,所以电流源型变频器的市场竞争能力已经逐渐变弱。 
图1
电流源型高压变频器
(2)
功率单元串联多电平型。如图2。此变频器采用多个低压的功率单元串联实现高压,输入侧的降压变压器采用移相方式,可有效消除对电网的谐波污染,输出侧采用多电平正弦PWM技术,可适用于任何电压的普通电机,另外,在某个功率单元出现故障时,可自动退出系统,而其余的功率单元可继续保持电机的运行,减少停机时造成的损失。系统采用模块化设计,可迅速替换故障模块。由此可见,单元串联多电平型变频器的市场竞争力是很明显的。
 
图2
功率单元串联多电平型高压变频器
(3)
三电平型。如图3。三电平型变频器采用钳位电路,解决了两只功率器件的串联的问题,并使相电压输出具有三个电平。三电平逆变器的主回路结构环节少,虽然为电压源型结构,但易于实现能量回馈。三电平变频器在国内市场遇到的最大难题是电压问题,其最大输出电压达不到6KV,所以往往需要用变通的方法,要么改变电机的电压,要么在输出侧加升压变压器。这一弱点限制了它的应用。 
图3
三电平型高压变频器
目前,虽然有人提出了其他不同的高压变频器解决方案,但大都不具有明显的可行性,或者说不具有将上述三种主流变频器结构取而代之的潜力。随着高压变频器成本的进一步降低,在中等功率市场,高低型变频器将会退出竞争,而只关注于较小功率的场合。对于单元串联多电平型变频器,主要缺点是变流环节复杂,功率元器件数目多,体积略大一些,但是,在其他的方式不能解决国内应用的需要,高压器件应用的可靠性还不是太高的情况下,其竞争优势在最近的一段时期内,可能还是无法替代的。三电平型变频器由于输出电压不高的问题,主要的应用范围应该是在一些特种领域,如轧钢机、轮船驱动、机车牵引、提升机等等,这些领域的电机都是特殊定制的,电压可以不是标准电压。在一定的功率水平,三电平型变频器取代传统的交交变频器是技术发展的趋势。三电平变频器的更大发展有待于更高耐压的功率器件的出现和现有产品可靠性的进一步提高。在超大功率场合,即大约8000KW以上的功率,用可控硅构成的LCI(负载换流逆变器)电流源型变频器仍旧是主角。由于上述的技术特征,通用型高压变频器目前是单元串联多电平型变频器占多数,约7成以上。目前国内以利德华福为代表的高压变频器厂家有不下二十家,基本都采用这种电路结构。
二、高压变频器的市场特点
(1)
市场普遍接受。如果在5年以前推广高压变频器,一般还要给用户讲解其原理,为什么要使用它。但是现在,经过众多厂家的共同努力,和市场使用效果的宣传,用户已经普遍接受高压变频器,只是在众多厂家中选择谁的问题。
(2)
业绩很重要。高压变频器一般功率较大,都使用在非常关键的部位。所以用户对产品的可靠性是最关心的。考查可靠性的最好办法,就是去已经使用的用户那里去了解情况,这样的用户越多,说服力就越强.
(3)
服务的重要性不容忽视。高压变频器是大功率的电子设备,在使用中,总会遇到一些问题,高压变频器工作的场合又非常关键,因此,对用户的及时服务是非常重要的。服务是维持用户关系的非常重要的方面。如果服务不到位,或者像有些国外厂家,服务和备件的价格较高,都会影响用户的选择。
(4)
现场的适应性非常重要。一般的高压变频器开发厂家,在自己的实验室里,都很难完全模仿用户现场的情况,所以,产品设计的灵活性怎么样,到了现场遇到问题能否尽快解决,都是非常重要的。由于耗电量大,负载又非常重要,用户往往不希望设备较长时间的试运行,所以,产品设计不严谨,一旦遇到问题,就非常难以解决。近年来,许多厂家的产品裹足不前,就是这个原因。
(5)
价格进一步下降。由于激烈的竞争,以及后来者为了夺取业绩而不得已采用的低价策略,高压变频器的价格下降很快,在某些项目上,一些竞争厂家报出的价格甚至低于成本价。
随着技术的进步,高压变频器除了在已有的市场上继续扩大规模外,还将进一步扩展应用的领域,对于很多负载,还需要解决变频器的工程应用上的问题。总之,高压变频器正在迎来发展的黄金时期。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
清雅且柔顺灬小鲤S
2020-12-18 · TA获得超过257个赞
知道答主
回答量:361
采纳率:100%
帮助的人:16.8万
展开全部

老师傅讲解并演示:变频器的工作原理!

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式