2个回答
展开全部
1.先对x积分,积分区域为:0《y《1,0《x《y
∫∫e^(-y^2)dxdy=∫(0,1)e^(-y^2)dy∫(0,y)dx
=∫(0,1)ye^(-y^2)dy=(-1/2)e^(-y^2)|(0,1)=(1-1/e)
2.用柱面坐标:积分区域为 r《2sinθ, 0《θ《π
∫∫(x^2+y^2)dxdy=∫(0,π)dθ∫(0,2sinθ)r^3dr
=4∫(0,π)(sinθ)^4dθ=8∫(0,π/2)(sinθ)^4dθ=8*(3/4)(1/2)(π/2)=3π/2
3.分D为两部分,D1:^2+y^2《4,D2:<x^2+y^2《9
用柱面坐标:∫∫|x^2+y^2-4|dxdy
=∫∫D1(4-x^2-y^2)dxdy+∫∫D2(x^2+y^2-4)dxdy
=∫(0,2π)dθ∫(0,2)r(4-r^2dr+∫(0,2π)dθ∫(2,3)r(r^2-4)dr
=2π(4+81/4-12)=49π/2
∫∫e^(-y^2)dxdy=∫(0,1)e^(-y^2)dy∫(0,y)dx
=∫(0,1)ye^(-y^2)dy=(-1/2)e^(-y^2)|(0,1)=(1-1/e)
2.用柱面坐标:积分区域为 r《2sinθ, 0《θ《π
∫∫(x^2+y^2)dxdy=∫(0,π)dθ∫(0,2sinθ)r^3dr
=4∫(0,π)(sinθ)^4dθ=8∫(0,π/2)(sinθ)^4dθ=8*(3/4)(1/2)(π/2)=3π/2
3.分D为两部分,D1:^2+y^2《4,D2:<x^2+y^2《9
用柱面坐标:∫∫|x^2+y^2-4|dxdy
=∫∫D1(4-x^2-y^2)dxdy+∫∫D2(x^2+y^2-4)dxdy
=∫(0,2π)dθ∫(0,2)r(4-r^2dr+∫(0,2π)dθ∫(2,3)r(r^2-4)dr
=2π(4+81/4-12)=49π/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询