已知f(x)为二次函数,且f(x+1)+f(x-1)=2x²-4x+4,求f(x)的解析式
展开全部
设f(x)=ax²+bx+c,f(x+1)+f(x-1)=a(x+1)*(x+1)+b(x+1)+c+a(x-1)*(x-1)+b(x-1)+c=2x²-4x+4
2ax*x+2bx+2a+2c=2x²-4x+4, 解得a=1,c=1,b=-2 f(x)=x² -2x+1
2ax*x+2bx+2a+2c=2x²-4x+4, 解得a=1,c=1,b=-2 f(x)=x² -2x+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令f(x)=ax²+bx+c,则:
f(x+1)+f(x-1)
=a(x+1)²+b(x+1)+c+a(x-1)²+b(x-1)+c
=2ax²+2bx+2a²+2c
∴2a=2,2b=-4,2a²+2c=4
a=1,b=-2,c=1
f(x)=x²-2x+1
f(x+1)+f(x-1)
=a(x+1)²+b(x+1)+c+a(x-1)²+b(x-1)+c
=2ax²+2bx+2a²+2c
∴2a=2,2b=-4,2a²+2c=4
a=1,b=-2,c=1
f(x)=x²-2x+1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令f(x)=ax^2+bx+c
f(x+1)+f(x-1)=a(x+1)^2+b(x+1)+c+a(x-1)^2+b(x-1)+c
=2ax^2+2bx+2a+2b+2c
=2x²-4x+4
2a=2 a=1
2b=-4 b=-2
2c=4 c=2
f(x)=x^2-2x+2
f(x+1)+f(x-1)=a(x+1)^2+b(x+1)+c+a(x-1)^2+b(x-1)+c
=2ax^2+2bx+2a+2b+2c
=2x²-4x+4
2a=2 a=1
2b=-4 b=-2
2c=4 c=2
f(x)=x^2-2x+2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询