已知:关于x的一元二次方程(m-2)²x²+(2m+1)x+1=0,有两个不相等的实数根,求m的取值范围
3个回答
展开全部
x的一元二次方程(m-2)²x²+(2m+1)x+1=0,有两个不相等的实数根,
所以,二次项系数m-2≠0
解得:m≠2
则:△=(2m+1)²-4(m-2)²≥0
4m²+4m+1-4m²+16m-16≥0
20m≥15
m≥3/4
所以:m≥3/4且m≠2
所以,二次项系数m-2≠0
解得:m≠2
则:△=(2m+1)²-4(m-2)²≥0
4m²+4m+1-4m²+16m-16≥0
20m≥15
m≥3/4
所以:m≥3/4且m≠2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为有两个不相等的实数根
所以 K大于0
所以 b²-4ac>0
因为 A=(m-2)² B=(2m+1) C=1
所以 (2m+1)²-4乘(m-2)² 乘1>0
所以解出来 M>20分之7
所以 K大于0
所以 b²-4ac>0
因为 A=(m-2)² B=(2m+1) C=1
所以 (2m+1)²-4乘(m-2)² 乘1>0
所以解出来 M>20分之7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询