级数求和问题

求级数∑x^n/n!的和函数除了用e^x展开这个方法还有其他方法吗?比如我本来不知道e^x可以展开成那样,那我就要用其他方法了。谢谢大家啊... 求级数∑x^n/n!的和函数除了用e^x展开这个方法还有其他方法吗?比如我本来不知道e^x可以展开成那样,那我就要用其他方法了。谢谢大家啊 展开
 我来答
电灯剑客
科技发烧友

2012-09-21 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:4945万
展开全部
楼上的做法有一定的道理,用逐项微分或者逐项积分确实是一种途径

不过有些观念还是需要注意一下,我补充一些注释

1. 如果完全不知道指数函数和对数函数,那么即使建立了f'=f, f(0)=1这样可分离变量的微分方程仍然不足以知道f(x)应该是什么,因为这是一种全新的函数

2. 在复分析里面确实是直接用f(x)=∑x^n/n!来定义指数函数的,其它初等函数也类似,数学分析中不这样做很大程度上是因为先接受初等函数的观念再学习会省很多事,但实际上初等函数最好还是通过级数来建立,而不是用有理数域上的函数去进行插值或取极限(这种定义的合理性需要很多工作来验证,但一般教材都跳过)

3. 即使完全不知道f(x)=∑x^n/n!是什么函数,通过Cauchy乘积还是可以建立起f(x+y)=f(x)f(y)的性质,这条性质和有理数域上的指数函数的性质相同,这样就可以推断或者说希望f(x)是某一种类似的函数,很自然地通过引进这个新的函数把有理数域上的指数函数推广到实数甚至复数

4. e=f(1)可以利用Euler折线法来求解,这样就得到了∑1/n!=lim (1+1/n)^n,接下去就可以用普通教材里的方法把与e相关的性质都推出来
tetateta
2012-09-21 · TA获得超过3999个赞
知道小有建树答主
回答量:739
采纳率:0%
帮助的人:401万
展开全部
f(x) = ∑x^n/n!
∫f(x) dx = ∫∑x^n/n! dx

∫f(x) dx = ∑∫x^n/n! dx = ∑ x^(n+1)/(n+1)! = f(x) - 1
f(x) = e^x+C

f(0) = 1 (注:0^0/0! = 1)

f(x) = e^x
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式