设球面∑:x^2+y^2+z^2=1,则曲面积分∫∫(x+y+z+1)^2dS=
2个回答
展开全部
解:∵x²+y²+z²=1 ==>z=±√(1-x²-y²)
令S1:z=√(1-x²-y²),S2:z=-√(1-x²-y²)。则S1和S2在xoy平面上的投影都是圆S:x²+y²=1
∴球面∑=S1+S2
∵αz/αx=±(-x/√(1-x²-y²)),αz/αy=±(-y/√(1-x²-y²))
∴dS=√(1+(αz/αx)²+(αz/αx)²)dxdy=dxdy/√(1-x²-y²)
故∫∫<∑>(x+y+z+1)²dS=∫∫<S1>(x+y+z+1)²dS+∫∫<S2>(x+y+z+1)²dS
=∫∫<S>(x+y+√(1-x²-y²)+1)²dxdy/√(1-x²-y²)+∫∫<S>(x+y-√(1-x²-y²)+1)²dxdy/√(1-x²-y²)
=∫∫<S>[(x+y+√(1-x²-y²)+1)²+(x+y-√(1-x²-y²)+1)²]dxdy/√(1-x²-y²)
=4∫∫<S>(xy+x+y+1)dxdy/√(1-x²-y²)
=4∫<0,2π>dθ∫<0,1>[r²sinθcosθ+r(sinθ+cosθ)+1]rdr/√(1-r²) (作极坐标变换)
=4∫<0,2π>[sin(2θ)/3+π(sinθ+cosθ)/4+1]dθ (中间运算省约)
=4*(2π)
=8π。
令S1:z=√(1-x²-y²),S2:z=-√(1-x²-y²)。则S1和S2在xoy平面上的投影都是圆S:x²+y²=1
∴球面∑=S1+S2
∵αz/αx=±(-x/√(1-x²-y²)),αz/αy=±(-y/√(1-x²-y²))
∴dS=√(1+(αz/αx)²+(αz/αx)²)dxdy=dxdy/√(1-x²-y²)
故∫∫<∑>(x+y+z+1)²dS=∫∫<S1>(x+y+z+1)²dS+∫∫<S2>(x+y+z+1)²dS
=∫∫<S>(x+y+√(1-x²-y²)+1)²dxdy/√(1-x²-y²)+∫∫<S>(x+y-√(1-x²-y²)+1)²dxdy/√(1-x²-y²)
=∫∫<S>[(x+y+√(1-x²-y²)+1)²+(x+y-√(1-x²-y²)+1)²]dxdy/√(1-x²-y²)
=4∫∫<S>(xy+x+y+1)dxdy/√(1-x²-y²)
=4∫<0,2π>dθ∫<0,1>[r²sinθcosθ+r(sinθ+cosθ)+1]rdr/√(1-r²) (作极坐标变换)
=4∫<0,2π>[sin(2θ)/3+π(sinθ+cosθ)/4+1]dθ (中间运算省约)
=4*(2π)
=8π。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询