已知函数f(x)的定义域为[-1/2,3/2],求函数g(x)=f(3x)+f(x/3)的定义域
展开全部
设3x=t1,x/3=t2
因为f(t1),f(t2)的定义域都是[-1/2,3/2]
所以-1/2<=t1<=3/2,-1/2<=t2<=3/2
-1/2<=3x<=3/2,-1/2<=x/3<=3/2
-1/6<=x<=1/2,-3/2<=x<=9/2
取交集,得到定义域是[-1/6,1/2]
因为f(t1),f(t2)的定义域都是[-1/2,3/2]
所以-1/2<=t1<=3/2,-1/2<=t2<=3/2
-1/2<=3x<=3/2,-1/2<=x/3<=3/2
-1/6<=x<=1/2,-3/2<=x<=9/2
取交集,得到定义域是[-1/6,1/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
-1/2<=3x<=3/2且-1/2<=x/3<=3/2
解得:[-1/6,1/2]
解得:[-1/6,1/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询