已知函数y=-x平方+ax-a/4+1/2在区间[0,1]上的最大值是2,求实数a的值
到网上查了一下,每个人的答案都不一样(汗。。。),正确答案到底是什么>_<(请写出详细的过程,谢谢哦)...
到网上查了一下,每个人的答案都不一样(汗。。。),正确答案到底是什么>_<(请写出详细的过程,谢谢哦)
展开
展开全部
函数的对称轴为x=a/2,分三种情况考虑,顶点(对称轴)在区间内,区间在对称轴左边,区间在对称轴右边
(1)顶点在[0,1]区间内,即对称轴x=a/2在[0,1]区间内,即0<=a/2<=1 , 即:0<=a<=2时,且x=a/2时y=2
f(a/2)=(a^2-a+2)/4 = 2 解出a=2 或者 a=-3 与0<=a<=2相矛盾,所以,这种情况不存在
(2)函数在对称轴左边是增函数,[0,1]在对称轴左边时,即x属于[0,1]小于对称轴,1<a/2 时,即a>2时,f(1)>f(0),f(1)是最大值2
f(1)=-1+a+1/2-a/4=(3a-2)/4 = 2 解得a=10/3 > 2,所以,a=10/3是成立的
(3)函数在对称轴右边是减函数,[0,1]在对称轴右边时,即x属于[0,1]大于对称轴,0>a/2 时,即a<0时,f(1)<f(0),f(0)是最大值2
f(0)=0+0+1/2-a/4=(2-a)/4 = 2 解得a=-6 < 0 ,也成立
综上,a=10/3 或 a=-6
(1)顶点在[0,1]区间内,即对称轴x=a/2在[0,1]区间内,即0<=a/2<=1 , 即:0<=a<=2时,且x=a/2时y=2
f(a/2)=(a^2-a+2)/4 = 2 解出a=2 或者 a=-3 与0<=a<=2相矛盾,所以,这种情况不存在
(2)函数在对称轴左边是增函数,[0,1]在对称轴左边时,即x属于[0,1]小于对称轴,1<a/2 时,即a>2时,f(1)>f(0),f(1)是最大值2
f(1)=-1+a+1/2-a/4=(3a-2)/4 = 2 解得a=10/3 > 2,所以,a=10/3是成立的
(3)函数在对称轴右边是减函数,[0,1]在对称轴右边时,即x属于[0,1]大于对称轴,0>a/2 时,即a<0时,f(1)<f(0),f(0)是最大值2
f(0)=0+0+1/2-a/4=(2-a)/4 = 2 解得a=-6 < 0 ,也成立
综上,a=10/3 或 a=-6
展开全部
这样解可能比较清晰:y=-x²+ax-a/4+1/2 在区间[0,1]上的最大值是2
设 y= -(x-k)²+2 显然当x=k时,y有最大值2 ∴k的取值区间为[0,1]
而y= -(x-k)²+2=-x²+2kx-k²+2=-x²+ax-a/4+1/2
∴2k=a 且 -k²+2=-a/4+1/2 解得k= -1 或k= 3/2 显然k= -1不在区间为[0,1]舍去
∴ k=3/2 此时 a=2k=3
设 y= -(x-k)²+2 显然当x=k时,y有最大值2 ∴k的取值区间为[0,1]
而y= -(x-k)²+2=-x²+2kx-k²+2=-x²+ax-a/4+1/2
∴2k=a 且 -k²+2=-a/4+1/2 解得k= -1 或k= 3/2 显然k= -1不在区间为[0,1]舍去
∴ k=3/2 此时 a=2k=3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
具体解答过程如下:
解:函数的对称轴为x=a/2
当0《a/2《1时,即:0<a<2,f(x)在顶点处取得最大值2
所以有:f(a/2)=2,解得:a=-2,或a=3.都不满足a的取值(舍去)
当a》2时,f(x)在(0,1)上单调递增,在x=1处取得最大值2,此时有:
f(1)=2,解得:a=10/3,满足题意。
当a《0时,f(x)在(0,1)上单调减,此时在x=0处取得最大值2.
所以:f(0)=2,解得:a=-6,满足题意。
综上所述:a=10/3或a=-6,满足题意。
望采纳!!!
解:函数的对称轴为x=a/2
当0《a/2《1时,即:0<a<2,f(x)在顶点处取得最大值2
所以有:f(a/2)=2,解得:a=-2,或a=3.都不满足a的取值(舍去)
当a》2时,f(x)在(0,1)上单调递增,在x=1处取得最大值2,此时有:
f(1)=2,解得:a=10/3,满足题意。
当a《0时,f(x)在(0,1)上单调减,此时在x=0处取得最大值2.
所以:f(0)=2,解得:a=-6,满足题意。
综上所述:a=10/3或a=-6,满足题意。
望采纳!!!
追问
虽然没有采纳你的,但还是谢谢了
追答
没事,小问题!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:∵抛物线对称轴为:x=a/2
① 当0≤a/2≤1 即 0≤a≤2 时 f(a/2) = 2 即:a= - 2 或 a = 3 , 且 都不满足(舍去)
② 当 a > 2 时,f(1) = 2,解得:a=10/3 满足。
③ 当 a < 0 时,f(0) = 2,解得:a= - 6 满足。
总之,a=10/3 或 a= - 6
① 当0≤a/2≤1 即 0≤a≤2 时 f(a/2) = 2 即:a= - 2 或 a = 3 , 且 都不满足(舍去)
② 当 a > 2 时,f(1) = 2,解得:a=10/3 满足。
③ 当 a < 0 时,f(0) = 2,解得:a= - 6 满足。
总之,a=10/3 或 a= - 6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
w
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询