3个回答
展开全部
令g(x)=ax³+bx,显然g(x)是一个奇函数;
对于这种:f(x)=g(x)+c,其中g(x)是一个奇函数的题型,给出通法,如下:
f(x)=g(x)+c
则f(-x)=g(-x)+c
两式相加得:f(x)+f(-x)=g(x)+g(-x)+2c,
因为g(x)是奇函数,所以:g(x)+g(-x)=0
所以:f(x)+f(-x)=2c
所以:f(x)=2c-f(-x) (记住这个结论,以后碰到就可以直接写出答案啦)
所以,该题中,f(2)=2*(-8)-f(-2)=-26
祝你开心!希望能帮到你,如果不懂,请Hi我,祝学习进步!
对于这种:f(x)=g(x)+c,其中g(x)是一个奇函数的题型,给出通法,如下:
f(x)=g(x)+c
则f(-x)=g(-x)+c
两式相加得:f(x)+f(-x)=g(x)+g(-x)+2c,
因为g(x)是奇函数,所以:g(x)+g(-x)=0
所以:f(x)+f(-x)=2c
所以:f(x)=2c-f(-x) (记住这个结论,以后碰到就可以直接写出答案啦)
所以,该题中,f(2)=2*(-8)-f(-2)=-26
祝你开心!希望能帮到你,如果不懂,请Hi我,祝学习进步!
展开全部
F(x)=f(x)+8是奇函数
F(-2)=10+8=18
所以F(2)=f(2)+8=-18
所以f(2)=-26
F(-2)=10+8=18
所以F(2)=f(2)+8=-18
所以f(2)=-26
追问
求过程
追答
过程如上
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(-2)=-8a-2b-8=10
-8a-2b=18
f(2)=8a+2b-8=-(-8a-2b)-8=-26
-8a-2b=18
f(2)=8a+2b-8=-(-8a-2b)-8=-26
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询