x+1/x=3,求(x^10+x^8+x^2+1)/(x^10+x^6+x^4+1)的值

novalight
2008-03-09 · TA获得超过4150个赞
知道大有可为答主
回答量:1593
采纳率:100%
帮助的人:660万
展开全部
1、先处理一下条件
原条件 x+1/x=3
平方得 x^2+1/x^2=7
再平方 x^4+1/x^4=47
前两式相乘 x^3+1/x^3=18
先放在这,备用
2、把原式变形
分子前两项提取x^8;分母前两项提取x^6得:
(x^2+1)(x^8+1)
—————————
(x^4+1)(x^6+1)
分子分母同除以x^5:
---分子第一项除以x^1、第二项除以x^4;
---分母第一项除以x^2、第二项除以x^3
得到
(x+1/x)(x^4+1/x^4)
———————————
(x^2+1/x^2)(x^3+1/x^3)
3、代入数据

3*47
----=47/42
7*18
OK了,怎么样,巧妙吧?
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式