
2个回答
展开全部
等腰△ABC的三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个不相等的实数根
解:
因为x2+(b+2)x+6-b=0有两个相等的实数根,
所以判别式△=(b+2)2-4(6-b)=0,即b2+8b-20=0;
b=2,b=-10(舍去);
1)当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;
2)当b为底,a为腰时,则5-2<5<5+2,能够构成三角形;
此时△ABC的周长为:5+5+2=12.
希望能帮到你啊,不懂可以追问,如果你认可我的回答请点击下方选为满意回答按钮,谢谢!
祝你学习进步!
解:
因为x2+(b+2)x+6-b=0有两个相等的实数根,
所以判别式△=(b+2)2-4(6-b)=0,即b2+8b-20=0;
b=2,b=-10(舍去);
1)当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;
2)当b为底,a为腰时,则5-2<5<5+2,能够构成三角形;
此时△ABC的周长为:5+5+2=12.
希望能帮到你啊,不懂可以追问,如果你认可我的回答请点击下方选为满意回答按钮,谢谢!
祝你学习进步!
2012-09-24
展开全部
∵x2+(b+2)x+6-b=0有两个相等的实数根,
∴△=(b+2)2-4(6-b)=0,即b2+8b-20=0;
b=2,b=-10(舍去);
①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;
②当b为底,a为腰时,则5-2<5<5+2,能够构成三角形;
此时△ABC的周长为:5+5+2=12.
∴△=(b+2)2-4(6-b)=0,即b2+8b-20=0;
b=2,b=-10(舍去);
①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;
②当b为底,a为腰时,则5-2<5<5+2,能够构成三角形;
此时△ABC的周长为:5+5+2=12.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询