证明关于圆心角是圆周角的2倍的三种情况
3个回答
展开全部
已知圆心角aob
,角acb是圆周角
求证:角aob=2角acb
证明:因为角aob=弧ab
角acb=1/2弧ab
所以角acb=1/2角aob
所以角aob=2角acb
所以圆心角等于圆周角的2倍
,角acb是圆周角
求证:角aob=2角acb
证明:因为角aob=弧ab
角acb=1/2弧ab
所以角acb=1/2角aob
所以角aob=2角acb
所以圆心角等于圆周角的2倍
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询