已知方程2x²+kx-2k+1=0的两实数根的平方和为四分之二十九,求k的值

pseudorange
2012-09-25 · TA获得超过9.5万个赞
知道大有可为答主
回答量:2.5万
采纳率:61%
帮助的人:2.8亿
展开全部
设方程的两根为x1和x2
由韦达定理得:
x1+x2=-k/2
x1x2=-k+1/2
x1²+x2²=29/4
(x1+x2)²-2x1x2=29/4
k²/4+2k-1=29/4
k²+8k-33=0
(k+11)(k-3)=0
k=-11或k=3
奥罗拉2012
2012-09-25 · TA获得超过383个赞
知道答主
回答量:182
采纳率:0%
帮助的人:181万
展开全部
设两实数根为α和β,于是有:
α²+β²=29/4
﹙α+β﹚²-2αβ=29/4 ............①
因:α+β=-k/2;αβ=﹙-2k+1﹚/2 ................②
所以将②代入①,就有:
k²+8k-33=0
解得:
k=-11,或 k=3
又因,若 k=-11时,原方程的 Δ<0,所以,k≠-11
所以,k=3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1x2y3z123
2012-09-25 · TA获得超过212个赞
知道小有建树答主
回答量:111
采纳率:0%
帮助的人:124万
展开全部
x1^2+x2^2=29/4
(x1+x2)^2-2x1*x2=(-k/2)^2-2(1-2k)/2
=k^2/4-1+2k=29/4
k1=-11 k2=3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式