1个回答
展开全部
(1)当n为偶数时,令n=2k,则k=n/2
Sn=1²-2²+3²-4²+……+(2k-1)²-(2k)²
=(1-2)(1+2)+(3-4)(3+4)+……+(2k-1-2k)(2k-1+2k)
=-1-2-3-4-……-(2k-1)-2k
=-(2k+1)*2k/2
=-k(2k+1)
=-n(n+1)/2
(2)当n为奇数时,令n=2k-1,则k=(n+1)/2
Sn=1²-2²+3²-4²+……+(2k-3)²-(2k-2)²+(2k-1)²
=(1-2)(1+2)+(3-4)(3+4)+……+(2k-3-2k+2)(2k-3+2k-2)+(2k-1)²
=-1-2-3-4-……-(2k-3)-(2k-2)+(2k-1)²
=-(2k-1)*(2k-2)/2+(2k-1)²
=k(2k-1)
=n(n+1)/2
综上所述,
Sn=(-1)^(n+1)*n(n+1)/2
Sn=1²-2²+3²-4²+……+(2k-1)²-(2k)²
=(1-2)(1+2)+(3-4)(3+4)+……+(2k-1-2k)(2k-1+2k)
=-1-2-3-4-……-(2k-1)-2k
=-(2k+1)*2k/2
=-k(2k+1)
=-n(n+1)/2
(2)当n为奇数时,令n=2k-1,则k=(n+1)/2
Sn=1²-2²+3²-4²+……+(2k-3)²-(2k-2)²+(2k-1)²
=(1-2)(1+2)+(3-4)(3+4)+……+(2k-3-2k+2)(2k-3+2k-2)+(2k-1)²
=-1-2-3-4-……-(2k-3)-(2k-2)+(2k-1)²
=-(2k-1)*(2k-2)/2+(2k-1)²
=k(2k-1)
=n(n+1)/2
综上所述,
Sn=(-1)^(n+1)*n(n+1)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询