在奥数幻方问题中,怎样求幻和?

 我来答
996364263
推荐于2016-12-02
知道答主
回答量:60
采纳率:0%
帮助的人:26.3万
展开全部
既然你诚心诚意的问了,那我就大发慈悲的告诉你!……

幻方问题
  【含义】 把n×n个自然数排在正方形的格子中,使各行、各列以及对角线上的各数之和都相等,这样的图叫做幻方。最简单的幻方是三级幻方。
  【数量关系】 每行、每列、每条对角线上各数的和都相等,这个“和”叫做“幻和”。
  三级幻方的幻和=45÷3=15
  五级幻方的幻和=325÷5=65
  【解题思路和方法】首先要确定每行、每列以及每条对角线上各数的和(即幻和),其次是确定正中间方格的数,然后再确定其它方格中的数。
  例1 把1,2,3,4,5,6,7,8,9这九个数填入九个方格中,使每行、每列、每条对角线上三个数的和相等。
  解 幻和的3倍正好等于这九个数的和,所以幻和为
  (1+2+3+4+5+6+7+8+9)÷3=45÷3=15
  九个数在这八条线上反复出现构成幻和时,每个数用到的次数不全相同,最中心的那个数要用到四次(即出现在中行、中列、和两条对角线这四条线上),四角的四个数各用到三次,其余的四个数各用到两次。看来,用到四次的“中心数”地位重要,宜优先考虑。
  设“中心数”为Χ,因为Χ出现在四条线上,而每条线上三个数之和等于15,所以 (1+2+3+4+5+6+7+8+9)+(4-1)Χ=15×4
  即 45+3Χ=60 所以 Χ=5
  接着用奇偶分析法寻找其余四个偶数的位置,它们
  276
  951
  438
  分别在四个角,再确定其余四个奇数的位置,它们分别
  在中行、中列,进一步尝试,容易得到正确的结果。
  例2 把2,3,4,5,6,7,8,9,10这九个数填到九个方格中,
  使每行、每列、以及对角线上的各数之和都相等。
  解 只有三行,三行用完了所给的9个数,所以每行三数之和为
  (2+3+4+5+6+7+8+9+10)÷3=18
  927
  468
  5103
  假设符合要求的数都已经填好,那么三行、三列、两条对角线共8行上的三个数之和都等于18,我们看18能写成哪三个数之和:
  最大数是10:18=10+6+2=10+5+3
  最大数是9: 18=9+7+2=9+6+3=9+5+4
  最大数是8: 18=8+7+3=8+6+4
  最大数是7: 18=7+6+5 刚好写成8个算式。
  首先确定正中间方格的数。第二横行、第二竖行、两个斜行都用到正中间方格的数,共用了四次。观察上述8个算式,只有6被用了4次,所以正中间方格中应填6。
  然后确定四个角的数。四个角的数都用了三次,而上述8个算式中只有9、7、5、3被用了三次,所以9、7、5、3应填在四个角上。但还应兼顾两条对角线上三个数的和都为18。
  最后确定其它方格中的数。
媛媛囡
2012-09-25 · TA获得超过157个赞
知道小有建树答主
回答量:230
采纳率:0%
帮助的人:201万
展开全部
先找中间数 再根据题意尝试即可
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
创作者fjslf914
2012-09-25
知道答主
回答量:24
采纳率:0%
帮助的人:4.8万
展开全部
根据排列情况,递推法。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
0Guanine
2012-10-01 · TA获得超过1151个赞
知道小有建树答主
回答量:233
采纳率:0%
帮助的人:143万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友36c4fd6
2012-09-25
知道答主
回答量:54
采纳率:0%
帮助的人:12.7万
展开全部
我搞语言的!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 4条折叠回答
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式