设P是椭圆x^2/a^2+y^2=1(a>1)的短轴的一个端点,Q为椭圆上的一个动点,求|PQ|的最大值
PQ^2=(1-a^2)[y-1/(1-a^2)]^2+a^2+1-1/(1-a^2)对称轴为x=1/(1-a^2)为什么不考虑③的情况?...
PQ^2=(1-a^2)[y-1/(1-a^2)]^2+a^2+1-1/(1-a^2)对称轴为x=1/(1-a^2)
为什么不考虑③的情况? 展开
为什么不考虑③的情况? 展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询