线性代数,施密特正交化,课本有说,正交矩阵化实对称矩阵A为对角矩阵步骤:
课本有说,正交矩阵化实对称矩阵A为对角矩阵步骤:1.求出A的全部特征值λ1,λ2,λ3,...,λn;2.对每个特征值λi,求出相应齐次线性方程组(λiE-A)x=0的一...
课本有说,正交矩阵化实对称矩阵A为对角矩阵步骤:
1. 求出A的全部特征值λ1,λ2,λ3, ..., λn;
2. 对每个特征值λi, 求出相应齐次线性方程组 (λiE-A)x=0 的一个基础解系,并利用施密特正交化方法将这个基础解系中的向量先正交化再单位化(如λi为单特征值或该基础解系已是正交向量组,则只需要单位化),从而得到属于特征值λi的正交化单位化的特征向量。
3. ....
实对称矩阵的定理有说,属于不同特征值的特征向量是正交的
我的问题是:基础解系是由特征向量组成,那就天然正交了,为何第二步要提及施密特正交化?有什么例子需要正交化的? 展开
1. 求出A的全部特征值λ1,λ2,λ3, ..., λn;
2. 对每个特征值λi, 求出相应齐次线性方程组 (λiE-A)x=0 的一个基础解系,并利用施密特正交化方法将这个基础解系中的向量先正交化再单位化(如λi为单特征值或该基础解系已是正交向量组,则只需要单位化),从而得到属于特征值λi的正交化单位化的特征向量。
3. ....
实对称矩阵的定理有说,属于不同特征值的特征向量是正交的
我的问题是:基础解系是由特征向量组成,那就天然正交了,为何第二步要提及施密特正交化?有什么例子需要正交化的? 展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询