快速排序算法原理与实现

谁帮我说明一下,网上和书上写的文字没看明白。这位匿名回答的大哥谢谢你了,但是我不想看网上那种回答,这个我都看了很多帖了,我想找个真正明白的给我讲讲。没有人会呀?郁闷!... 谁帮我说明一下,网上和书上写的文字没看明白。
这位匿名回答的大哥谢谢你了,但是我不想看网上那种回答,这个我都看了很多帖了,我想找个真正明白的给我讲讲。
没有人会呀?郁闷!
展开
 我来答
free思恋不是病
高粉答主

推荐于2019-09-16 · 每个回答都超有意思的
知道答主
回答量:42
采纳率:0%
帮助的人:10.9万
展开全部

快速排序的基本原理就是每一次把一个值放到它应该的位置上,然后序列被分为两部分,这个数前一部分后一部分,再对这两部分分别进行快速排序即可。

如此递归下去,但是对于基本有序的数列,你就不要快排了,那样效率会很低。

扩展资料:

算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。

如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。

形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,并在其后尝试定义有效计算性或者有效方法中成形。

这些尝试包括库尔特·哥德尔、Jacques Herbrand和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的递归函数,阿隆佐·邱奇于1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾伦·图灵1937年提出的图灵机。即使在当前,依然常有直觉想法难以定义为形式化算法的情况。

参考资料:百度百科-算法

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
山枫为谷l
推荐于2019-10-31 · TA获得超过429个赞
知道答主
回答量:45
采纳率:0%
帮助的人:4.1万
展开全部

快速排序的原理:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小。

然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

假设要排序的数组是A[1]……A[N],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。一躺快速排序的算法是:

1、设置两个变量I、J,排序开始的时候I:=1,J:=N;

2、以第一个数组元素作为关键数据,赋值给X,即X:=A[1];

3、从J开始向前搜索,即由后开始向前搜索(J:=J-1),找到第一个小于X的值,两者交换;

4、从I开始向后搜索,即由前开始向后搜索(I:=I+1),找到第一个大于X的值,两者交换;

5、重复第3、4步,直到I=J。

扩展资料:

设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序。

值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动。

一趟快速排序的算法是:

1、设置两个变量i、j,排序开始的时候:i=0,j=N-1;

2、以第一个数组元素作为关键数据,赋值给key,即key=A[0];

3、从j开始向前搜索,即由后开始向前搜索(j--),找到第一个小于key的值A[j],将A[j]的值赋给A[i];

4、从i开始向后搜索,即由前开始向后搜索(i++),找到第一个大于key的A[i],将A[i]的值赋给A[j];

5、重复第3、4步,直到i=j; (3,4步中,没找到符合条件的值,即3中A[j]不小于key,4中A[i]不大于key的时候改变j、i的值,使得j=j-1,i=i+1,直至找到为止。找到符合条件的值,进行交换的时候i, j指针位置不变。

参考资料:百度百科 快速排序法

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
推荐于2017-12-16
展开全部
快速排序是对冒泡排序的一种改进。它的基本思想是:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一不部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

假设要排序的数组是A[1]……A[N],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。一躺快速排序的算法是:

1)、设置两个变量I、J,排序开始的时候I:=1,J:=N;

2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1];

3)、从J开始向前搜索,即由后开始向前搜索(J:=J-1),找到第一个小于X的值,两者交换;

4)、从I开始向后搜索,即由前开始向后搜索(I:=I+1),找到第一个大于X的值,两者交换;

5)、重复第3、4步,直到I=J;

例如:待排序的数组A的值分别是:(初始关键数据X:=49)

A[1] A[2] A[3] A[4] A[5] A[6] A[7]:

49 38 65 97 76 13 27

进行第一次交换后: 27 38 65 97 76 13 49

( 按照算法的第三步从后面开始找

进行第二次交换后: 27 38 49 97 76 13 65

( 按照算法的第四步从前面开始找>X的值,65>49,两者交换,此时I:=3 )

进行第三次交换后: 27 38 13 97 76 49 65

( 按照算法的第五步将又一次执行算法的第三步从后开始找

进行第四次交换后: 27 38 13 49 76 97 65

( 按照算法的第四步从前面开始找大于X的值,97>49,两者交换,此时J:=4 )

此时再执行第三不的时候就发现I=J,从而结束一躺快速排序,那么经过一躺快速排序之后的结果是:27 38 13 49 76 97 65,即所以大于49的数全部在49的后面,所以小于49的数全部在49的前面。

快速排序就是递归调用此过程——在以49为中点分割这个数据序列,分别对前面一部分和后面一部分进行类似的快速排序,从而完成全部数据序列的快速排序,最后把此数据序列变成一个有序的序列,根据这种思想对于上述数组A的快速排序的全过程如图6所示:

初始状态 {49 38 65 97 76 13 27}

进行一次快速排序之后划分为 {27 38 13} 49 {76 97 65}

分别对前后两部分进行快速排序 {13} 27 {38}

结束 结束 {49 65} 76 {97}

49 {65} 结束

结束

图6 快速排序全过程

1)、设有N(假设N=10)个数,存放在S数组中;

2)、在S[1。。N]中任取一个元素作为比较基准,例如取T=S[1],起目的就是在定出T应在排序结果中的位置K,这个K的位置在:S[1。。K-1]<=S[K]<=S[K+1..N],即在S[K]以前的数都小于S[K],在S[K]以后的数都大于S[K];

3)、利用分治思想(即大化小的策略)可进一步对S[1。。K-1]和S[K+1。。N]两组数据再进行快速排序直到分组对象只有一个数据为止。

如具体数据如下,那么第一躺快速排序的过程是:

数组下标: 1 2 3 4 5 6 7 8 9 10

45 36 18 53 72 30 48 93 15 36

I J

(1) 36 36 18 53 72 30 48 93 15 45

(2) 36 36 18 45 72 30 48 93 15 53

(3) 36 36 18 15 72 30 48 93 45 53

(4) 36 36 18 15 45 30 48 93 72 53

(5) 36 36 18 15 30 45 48 93 72 53

通过一躺排序将45放到应该放的位置K,这里K=6,那么再对S[1。。5]和S[6。。10]分别进行快速排序。

一般来说,冒泡法是程序员最先接触的排序方法,它的优点是原理简单,编程实现容易,但它的缺点就是--程序的大忌--速度太慢。下面我介绍一个理解上简单但编程实现上不是太容易的排序方法,我不知道它是不是现有排序方法中最快的,但它是我见过的最快的。排序同样的数组,它所需的时间只有冒泡法的 4% 左右。我暂时称它为“快速排序法”。

“快速排序法”使用的是递归原理,下面我结合一个例子来说明“快速排序法”的原理。首先给出一个数组{53,12,98,63,18,72,80,46, 32,21},先找到第一个数--53,把它作为中间值,也就是说,要把53放在一个位置,使得它左边的值比它小,右边的值比它大。{21,12,32, 46,18,53,80,72,63,98},这样一个数组的排序就变成了两个小数组的排序--53左边的数组和53右边的数组,而这两个数组继续用同样的方式继续下去,一直到顺序完全正确。

我这样讲你们是不是很胡涂,不要紧,我下面给出实现的两个函数:

/*
n就是需要排序的数组,left和right是你需要排序的左界和右界,
如果要排序上面那个数组,那么left和right分别是0和9
*/

void quicksort(int n[], int left,int right)
{
int dp;
if (left<right) {

/*
这就是下面要讲到的函数,按照上面所说的,就是把所有小于53的数放
到它的左边,大的放在右边,然后返回53在整理过的数组中的位置。
*/
dp=partition(n,left,right);

quicksort(n,left,dp-1);

quicksort(n,dp+1,right); //这两个就是递归调用,分别整理53左边的数组和右边的数组
}
}

我们上面提到先定位第一个数,然后整理这个数组,把比这个数小的放到它的左边,大的放右边,然后

返回这中间值的位置,下面这函数就是做这个的。
int partition(int n[],int left,int right)
{
int lo,hi,pivot,t;

pivot=n[left];
lo=left-1;
hi=right+1;

while(lo+1!=hi) {
if(n[lo+1]<=pivot)
lo++;
else if(n[hi-1]>pivot)
hi--;
else {
t=n[lo+1];
n[++lo]=n[hi-1];
n[--hi]=t;
}
}

n[left]=n[lo];
n[lo]=pivot;
return lo;
}

这段程序并不难,应该很好看懂,我把过程大致讲一下,首先你的脑子里先浮现一个数组和三个指针,第一个指针称为p指针,在整个过程结束之前它牢牢的指向第一个数,第二个指针和第三个指针分别为lo指针和hi指针,分别指向最左边的值和最右边的值。lo指针和hi指针从两边同时向中间逼近,在逼近的过程中不停的与p指针的值比较,如果lo指针的值比p指针的值小,lo++,还小还++,再小再++,直到碰到一个大于p指针的值,这时视线转移到hi指针,如果 hi指针的值比p指针的值大,hi--,还大还--,再大再--,直到碰到一个小于p指针的值。这时就把lo指针的值和hi指针的值做一个调换。持续这过程直到两个指针碰面,这时把p指针的值和碰面的值做一个调换,然后返回p指针新的位置。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一堂钦嘏寿芝觞370
2012-02-23 · TA获得超过6.9万个赞
知道大有可为答主
回答量:3.9万
采纳率:0%
帮助的人:5049万
展开全部
我也是初学者,可能回答的你会理解。
举个例子 char s[]={d , x , a ,r , p , j , i }
s[0] s[1] s[2] s[3] s[4] s[5] s[6]
在要排序的几个字母里,选一个固定的字母(我习惯选择中间一个r)
从左边第一个起依次向右直到 r处 找出第一个比r大的 s[1 ]x
从右边最后一个起一次向左直到r处 找出第一个比r小的 s[6] i
交换这两个,此时为 d i a r p j x
接着上面的继续找 左边一直到r已经没有比它大的,那就停在r处
右边找到 j 比r小 将 r与j j交换 d i a j p r x
右边继续往前找 发现p比r小 交换 d i a j r p x
此时数组已经全部被遍历
r左边全都是比它小的 右边全是比它大的
通过循环再对左右进行相同的过程
思想明白了,代码就好写了吧???
不知道讲没讲明白 不明白可以发邮件问我
2468233107@qq.com
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
夏日绝2333
高粉答主

2018-06-21 · 欢迎喜欢文化的伙伴一起交流
夏日绝2333
采纳数:882 获赞数:63285

向TA提问 私信TA
展开全部
1、设置两个变量I、J,排序开始的时候I:=1,J:=N;
2、以第一个数组元素作为关键数据,赋值给X,即X:=A[1];
3、从J开始向前搜索,即由后开始向前搜索(J:=J-1),找到第一个小于X的值,两者交换;
4、从I开始向后搜索,即由前开始向后搜索(I:=I+1),找到第一个大于X的值,两者交换;
5、重复第3、4步,直到I=J;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式