一道线性代数的题,求解答
设a1a2。。。an属于Rn是n个线性无关的向量an+1=k1a1+。。。+knan其中k1k2。。kn全不为0证明a1。。。an+1中任意n个向量线性无关。...
设a1 a2 。。。an属于Rn是n个线性无关的向量
an+1=k1a1+。。。+knan 其中k1 k2 。。kn全不为0证明a1。。。an+1中任意n个向量线性无关。 展开
an+1=k1a1+。。。+knan 其中k1 k2 。。kn全不为0证明a1。。。an+1中任意n个向量线性无关。 展开
1个回答
展开全部
若n个向量不含游誉脊a(n+1),由题设他们线性无关
若包含a(n+1),不妨考虑方程c1a1+c2a2+……+c(n-1)a(n-1)+cna(n+1)
=(c1+cnk1)a1+(c2+cnk2)a2+……+(c(n-1)+cnk(n-1))a(n-1)+cnknan=0
因为a1 a2 。。。an线性无关,所虚雹以c1+cnk1=c2+cnk2=……=c(n-1)+cnk(n-1)=cnkn=0,
但kn不等零,所以cn=0,故c1=c2=……=cn=0
即a1,a2,……,a(n-1),a(n+1)线性神渗无关
证毕。
若包含a(n+1),不妨考虑方程c1a1+c2a2+……+c(n-1)a(n-1)+cna(n+1)
=(c1+cnk1)a1+(c2+cnk2)a2+……+(c(n-1)+cnk(n-1))a(n-1)+cnknan=0
因为a1 a2 。。。an线性无关,所虚雹以c1+cnk1=c2+cnk2=……=c(n-1)+cnk(n-1)=cnkn=0,
但kn不等零,所以cn=0,故c1=c2=……=cn=0
即a1,a2,……,a(n-1),a(n+1)线性神渗无关
证毕。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询