三角形ABC中,AB=AC,∠BAC=90º;,点D在BC的延长线上,AD=AE,∠DAE=90º;,求证:CE⊥BD

求证:S△DCA=S△ABE... 求证:S△DCA=S△ABE 展开
ygtmjn
2012-09-26 · TA获得超过1061个赞
知道小有建树答主
回答量:364
采纳率:0%
帮助的人:231万
展开全部
连接CE,三角形BAC和三角形DAE均为等腰直角三角形,
在三角形BAD和三角形CAE中:
AE=AD,BA=AC,∠BAD=∠CAE=90°+∠CAD
则:三角形BAD和三角形CAE全等
即:∠ACE=∠ABD=45°
又:∠BCA=45°
则:∠BCE=90°
即:CE⊥BD
呐喊的汪人
2012-09-26 · TA获得超过1.4万个赞
知道大有可为答主
回答量:3777
采纳率:53%
帮助的人:767万
展开全部
证明,
∵AB=AC,AD=AE,∠EAC=90﹢∠CAD=∠BAD
∴△BAD≌△ACE
∴∠ADB=∠AEC
∵∠CAD﹢∠ADC=45
∴在△AEC中∠AEC﹢90﹢∠DAC﹢∠ACE=180
∴∠ACE=45
∴∠ACE﹢∠ACB=90
∴EC⊥BD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式