分解因式(x+1)^4-(x+3) ^4-272 5
2个回答
展开全部
(x+1)^4+(x+3)^4-272
=(x+3)^4-4^4+(x+1)^4-2^4
(平方差)
=[(x+3)^2-4^2][(x+3)^2+4^2]+[(x+1)^2-2^2][(x+1)^2+2^2]
(平方差)
=(x-1)(x+7)[(x+3)^2+4^2]+(x-1)(x+3)[(x+1)^2+2^2]
(提取公因式,再整理)
=2(x-1)(x^2+4x+19)(5+x)
=(x+3)^4-4^4+(x+1)^4-2^4
(平方差)
=[(x+3)^2-4^2][(x+3)^2+4^2]+[(x+1)^2-2^2][(x+1)^2+2^2]
(平方差)
=(x-1)(x+7)[(x+3)^2+4^2]+(x-1)(x+3)[(x+1)^2+2^2]
(提取公因式,再整理)
=2(x-1)(x^2+4x+19)(5+x)
追问
分解因式(x+1)^4-(x+3) ^4-272, (x+1)^4-(x+3) ^4 是减号
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
原式=[(x+1)^2-(x+3)^2]*[(x+1)^2+(x+3)^2]-272
=[(x+1)-(x+3)]*[(x+1)+(x+3)]*[2x^2+8x+10]-272
=-2*2(x+2)*2*(x^2+4x+5)-272
=-8(x+2)*(x^2+4x+5)-272
=-8(x^3+4x^2+5x+2x^2+8x+10)-272
=-8*(x^3+6x^2+13x+10)-272
=-8x^3-48x^2-104x-80-272
=x^2+4x+5-352
=[(x+1)-(x+3)]*[(x+1)+(x+3)]*[2x^2+8x+10]-272
=-2*2(x+2)*2*(x^2+4x+5)-272
=-8(x+2)*(x^2+4x+5)-272
=-8(x^3+4x^2+5x+2x^2+8x+10)-272
=-8*(x^3+6x^2+13x+10)-272
=-8x^3-48x^2-104x-80-272
=x^2+4x+5-352
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询