1个回答
展开全部
对的曲线积分是以曲线为上底,以曲线在坐标轴上的投影为下底,在积分区域内所围的曲边梯形的面积.
对曲面二重积分是以曲面为顶,曲面在坐标面的投影为底的曲顶柱体的体积.
对于求曲面积分,如果被积函数不是向量函数,则求曲线积分的思想是通过揭示映射关系,把曲面Σ的积分转换成平面D上的积分,而D则是Σ在某个平面上的投影,通常是xOy平面。那么问题就变成去寻找怎样的一种映射关系。
对曲面二重积分是以曲面为顶,曲面在坐标面的投影为底的曲顶柱体的体积.
对于求曲面积分,如果被积函数不是向量函数,则求曲线积分的思想是通过揭示映射关系,把曲面Σ的积分转换成平面D上的积分,而D则是Σ在某个平面上的投影,通常是xOy平面。那么问题就变成去寻找怎样的一种映射关系。
追问
你回答的第一句“对的曲线积分”是什么意思呀?而且什么叫对曲面二重积分呀?还有什么叫向量函数?又不是向量的函数吗?
来自:求助得到的回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
专业边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。公司汇聚了...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询