如图8,在△ABC中,∠B=60°,圆O是△ABC的外接圆,过点A作圆O的切线,交CO的延长线于点P

如图8,在△ABC中,∠B=60°,圆O是△ABC的外接圆,过点A作圆O的切线,交CO的延长线于点P,CP交圆O于点D。(1)求证AP=PC(2)若AC=3,求PC的长... 如图8,在△ABC中,∠B=60°,圆O是△ABC的外接圆,过点A作圆O的切线,交CO的延长线于点P,CP交圆O于点D。
(1)求证AP=PC
(2)若AC=3,求PC的长
展开
陶永清
2012-09-27 · TA获得超过10.6万个赞
知道大有可为答主
回答量:1.5万
采纳率:66%
帮助的人:7825万
展开全部
1)疑似要证明:AP=AC
连AD,
因为AC弧所对的圆周角为∠B和∠ADC
所以∠ADC=∠B=60°
因为CD是直径
所以∠CAD=90
所以∠ACD=30°
因为PA是圆的切线
所以∠PAD=∠ACD=30°
因为在△ADP中,∠ADC=∠P+∠PAD
所以∠P=∠ADC-∠PAD=60-30=30
所以∠P=∠ACD
所以AP=AC
2)在直角三角形ACD中,AC=3,
由勾股定理,得CD=2√3,DA=√3
因为∠P=∠PAD=30
所以DP=DA=√3
所以PC=PD+DC=3√3
追问
为什么PA是圆的切线
所以就∠PAD=∠ACD=30°
追答
弦切角等于它所夹弧所对的圆周角
wenxindefeng6
高赞答主

2012-09-27 · 一个有才华的人
知道大有可为答主
回答量:1.4万
采纳率:100%
帮助的人:5893万
展开全部
(1)◆本题结论有误,正确结论为:AP=AC.
证明:连接OA.PA为切线,则OA⊥PA.
∵∠AOC=2∠B=120º.(圆周角的性质)
∴∠P+∠PAO=120º.(三角形外角的性质)
则∠P=120º-∠PAO=30º;
又OA=OC,则∠ACO=(180º-∠AOC)/2=30º.
∴∠P=∠ACO,得AP=AC.
(2)解:作AH垂直PC于H.
∵∠ACO=30º.
∴AH=AC/2=3/2,CH=√(AC²-AH²)=√(9-9/4)=3√3/2.
又AP=AC.故PC=2CH=3√3.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zian007
2012-09-27 · TA获得超过1.1万个赞
知道大有可为答主
回答量:8370
采纳率:33%
帮助的人:5196万
展开全部
  • AP=PC

  • 不会吧

  • 看图

  • 就知差得多了

  •  

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式