在三角形ABC中,角A,B,C的对边分别a,b,c,为已知A等于£/4,bsin(£/C)-csin(£/+B)_a()求证:B-C 20
展开全部
证明:
bsin(π/4+C)-csin(π/4+B)=a
bsin(A+C)-csin(A+B)=a
bsinB-csinC=a
sin²B-sin²C=sinA (正弦定理)
2sin²B-2sin²C=2sinA
(1-cos2B)-(1-cos2C)=2sinA
cos2C-cos2B=2sinA
cos[(C+B)+(C-B)]-cos[(C+B)-(C-B)]=2sinA
-2sin(C+B)sin(C-B)=2sinA
-2sinAsin(C-B)=2sinA
所以sin(C-B)=-1,
那么C-B=-π/2,
即B-C=π/2
bsin(π/4+C)-csin(π/4+B)=a
bsin(A+C)-csin(A+B)=a
bsinB-csinC=a
sin²B-sin²C=sinA (正弦定理)
2sin²B-2sin²C=2sinA
(1-cos2B)-(1-cos2C)=2sinA
cos2C-cos2B=2sinA
cos[(C+B)+(C-B)]-cos[(C+B)-(C-B)]=2sinA
-2sin(C+B)sin(C-B)=2sinA
-2sinAsin(C-B)=2sinA
所以sin(C-B)=-1,
那么C-B=-π/2,
即B-C=π/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询