在四边形ABCD中,AC=BD =6,E.F.G.H分别是AB.BC.CD.DA的中点,则EG*EG+FH*FH= 5

爱Ariel林依晨
2013-05-19 · TA获得超过1345个赞
知道小有建树答主
回答量:267
采纳率:0%
帮助的人:209万
展开全部
如图,连接EF,FG,GH,EH,EG与FH相交于点O。
∵E、H分别是AB、DA的中点,∴EH是△ABD的中位线。滚简枝
∴EH= BD=3。
同理可得EF=GH= AC=3,FG= BD=3。
∴EH=EF=GH=FG=3。大敏∴四边形EFGH为菱形。
∴EG⊥HF,且垂足为O。∴EG=2OE,FH=2OH。
在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=9。
等式两边同时乘以4得:4OE2+4OH2=9×4=36。
∴(2OE)咐宏2+(2OH)2=36,即EG2+FH2=36。
匿名用户
2012-09-29
展开全部
因为E,F,G,H分别是AB,BC,CD,DA的中点,所以EG,FH分别是AC,BD的中位线,由此可键卖薯稿者知配盯
AC+BD=2(EG+FH)=a
AC*BD=2EG*2FH=4EG*FH=b
因为(EG+FH)^2=EG^2+FH^2+2EG*FH
所以EG^2+FH^2=(EG+FH)^2-2EG*FH
=(a/2)^2-b/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式