设函数y=f(x)在点x0的某一邻域内有定义,证明:f'(x0)=A的充分必要条件是f_'(x0)=f+'(x0)=A

丘冷萱Ad
2012-09-28 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3976万
展开全部
若lim f '(x0)=A,则lim[x→x0] [f(x)-f(x0)]/(x-x0)=A
因此lim[x→x0+] [f(x)-f(x0)]/(x-x0)=A
lim[x→x0-] [f(x)-f(x0)]/(x-x0)=A
则:f+'(x0)=f-'(x0)=A
反之:若f+'(x0)=f-'(x0)=A
则lim[x→x0+] [f(x)-f(x0)]/(x-x0)=A
lim[x→x0-] [f(x)-f(x0)]/(x-x0)=A

因此:lim[x→x0] [f(x)-f(x0)]/(x-x0)=A
即f '(x0)=A

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式