已知函数f(x)对一切实数x、y满足:f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;(2)若f(-3)=a,试用a表示f(12);(3)如果f(x)在[0,+无穷]上递增,解不等式f(x)+f(x-4)+4a>0...
(1)求证:f(x)是奇函数;(2)若f(-3)=a,试用a表示f(12);(3)如果f(x)在[0,+无穷]上递增,解不等式f(x)+f(x-4)+4a>0
展开
1个回答
展开全部
1、f(0)=f(0)+f(0),得:f(0)=0
f(0)=f(x)+f(-x),因此得:f(x)=-f(-x),所以f(x)是奇函数
2、f(12)=f(3)+f(3)+f(3)+f(3)=4f(3)=-4f(-3)=-4a
3、f(x)+f(x-4)+4a>0
f(x)+f(x-4)+4f(3)>0
f(x)+f(x-4)+f(12)>0
f(x+x-4+12)>0
由于f(x)是增函数,得:2x+8>0,得x>-4
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
f(0)=f(x)+f(-x),因此得:f(x)=-f(-x),所以f(x)是奇函数
2、f(12)=f(3)+f(3)+f(3)+f(3)=4f(3)=-4f(-3)=-4a
3、f(x)+f(x-4)+4a>0
f(x)+f(x-4)+4f(3)>0
f(x)+f(x-4)+f(12)>0
f(x+x-4+12)>0
由于f(x)是增函数,得:2x+8>0,得x>-4
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询