在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA-2cosC/cosB=2c-a/b。

(1)求sinC/sinA的值。(2)若cosB=1/4,b=2,求△ABC的面积S... (1)求sinC/sinA的值。
(2)若cosB=1/4,b=2,求△ABC的面积S
展开
妙酒
2012-09-30 · TA获得超过186万个赞
知道顶级答主
回答量:42万
采纳率:93%
帮助的人:20.4亿
展开全部
1
(cosA-2cosC)/cosB=(2c-a)/b
根据正弦定理
(cosA-2cosC)/cosB=(2sinC-sinA)/sinB
∴sinBcosA-2cosCsinB=2sinCcosB-sinAcosB
∴sinBcosA+cosBsinA=2(sinBcosC+cosBsinC)
∴sin(B+A)=2sin(B+C)
∴sinC=2sinA
∴sinC/sinA=2
2
∵sinC/sinA=2∴c/a=2.c=2a
∵cosB=1/4,b=2,根据余弦定理
b²=a²+c²-2accosB
∴4=a²+4a²-a² ==>a=1,c=2
又sinB=√(1-cos²B)=√15/4
∴三角形ABC的面积
S=1/2acsinB=1/2*2*√15/4=√15/4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式