已知函数f(x)对任意的x,y属于R,总有f(x)+f(y)=f(x+y) 求该函数奇偶性

古棠闲人
2012-10-01 · 寻找、分享,剪辑时空。
古棠闲人
采纳数:313 获赞数:1762

向TA提问 私信TA
展开全部
解:已知函数f(x)对任意的x,y属于R,总有f(x)+f(y)=f(x+y),
则当x=y=0时,有f(0)+f(0)=f(0+0)=f(0),即得f(0)=0;
于是对任意的x属于R,可得f(x)+f(-x)=f(x+(-x))=f(0)=0,即有f(-x)=-f(x),
故知f(x)是奇函数.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式