已知函数f(x)=x^2+ax^2+bx+c(x∈[-1,2]),且函数f(x)在x=1和x=-2/3处都取得极值。
展开全部
1.f'(x)=2x+ax+b
因为f(x)在x=1和x=-2/3处都取得极值
则有:2+a+b=0
-4/3-2a/3+b=0
解得:a=-2,b=0
f(x)=-x^2+c
显然对称轴为x=0,抛物线开口向下,
对称轴左侧单调递增,即[-1,0]单调递增
对称轴右侧单调递减,即[0,2]单调递减
因为f(x)在x=1和x=-2/3处都取得极值
则有:2+a+b=0
-4/3-2a/3+b=0
解得:a=-2,b=0
f(x)=-x^2+c
显然对称轴为x=0,抛物线开口向下,
对称轴左侧单调递增,即[-1,0]单调递增
对称轴右侧单调递减,即[0,2]单调递减
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
求导,带入两个极值处的x求出a,b,然后求单调区间,注意定义域。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询