lim(x-0)(2sinx+cosx)^(1/x)不用无穷小和洛比达怎么求?
2个回答
展开全部
完全可以不用无穷小和洛比达法则求解此题!
解:(重要极限法)
∵lim(x->0)[(2sinx+cosx-1)/x]=2*lim(x->0)(sinx/x)+lim(x->0)[(cosx-1)/x]
=2*lim(x->0)(sinx/x)+lim(x->0)[(x/2)(sin(x/2)/(x/2))²]
=2*lim(x->0)(sinx/x)+{lim(x->0)(x/2)*[lim(x->0)(sin(x/2)/(x/2))]²}
=2*1+(0/2)*1² (应用重要极限lim(z->0)(sinz/z)=1)
=2
∴原式=lim(x->0){[1+(2sinx+cosx-1)]^[(1/(2sinx+cosx-1))*((2sinx+cosx-1)/x)]}
={lim(x->0)[(1+(2sinx+cosx-1))^(1/(2sinx+cosx-1))]}^{lim(x->0)[(2sinx+cosx-1)/x]}
=e^{lim(x->0)[(2sinx+cosx-1)/x]} (应用重要极限lim(z->0)[(1+z)^(1/z)]=e)
=e^2
=e²。
解:(重要极限法)
∵lim(x->0)[(2sinx+cosx-1)/x]=2*lim(x->0)(sinx/x)+lim(x->0)[(cosx-1)/x]
=2*lim(x->0)(sinx/x)+lim(x->0)[(x/2)(sin(x/2)/(x/2))²]
=2*lim(x->0)(sinx/x)+{lim(x->0)(x/2)*[lim(x->0)(sin(x/2)/(x/2))]²}
=2*1+(0/2)*1² (应用重要极限lim(z->0)(sinz/z)=1)
=2
∴原式=lim(x->0){[1+(2sinx+cosx-1)]^[(1/(2sinx+cosx-1))*((2sinx+cosx-1)/x)]}
={lim(x->0)[(1+(2sinx+cosx-1))^(1/(2sinx+cosx-1))]}^{lim(x->0)[(2sinx+cosx-1)/x]}
=e^{lim(x->0)[(2sinx+cosx-1)/x]} (应用重要极限lim(z->0)[(1+z)^(1/z)]=e)
=e^2
=e²。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询