已知函数f(x)=(x-k)e^x 求f(x)在区间[1,2]上的最小值
展开全部
f'(x)=(x-k+1)e^x
. =[x-(k-1)]e^x
(1)若k≤-2,则:f(x)在[1,2]上递增,则最小值是f(1);
(2)若-2<k<3,则:f(x)在[1,k-1]上递减,在[k+1,2]上递增,则最小值是f(k-1);
(3)若k≥3,则:f(x)在[1,2]上递减,则最小值是f(2)
. =[x-(k-1)]e^x
(1)若k≤-2,则:f(x)在[1,2]上递增,则最小值是f(1);
(2)若-2<k<3,则:f(x)在[1,k-1]上递减,在[k+1,2]上递增,则最小值是f(k-1);
(3)若k≥3,则:f(x)在[1,2]上递减,则最小值是f(2)
更多追问追答
追问
基础太差 看不懂啊 希望能详细一些啊 十分感谢
追答
f'(x)=(x-k+1)e^x
. =[x-(k-1)]e^x
(1)若k≤2,解:f'(x)=0,得:f(x)在(0,k-1)上递减,在(k-1,+∞)上递增,由于k-1<1,则:函数f(x)在(1,2)上递增,则最小值是f(1)
(2)若2<k<3,则:f(x)在[1,k-1]上递减,在[k+1,2]上递增,则最小值是f(k-1);
(3)若k≥3,则:f(x)在[1,2]上递减,则最小值是f(2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询