已知f(x)=cos(3x/2)cos(x/2)-sin(3x/2)sin(x/2)-2sinxcosx.
5个回答
展开全部
f(x)=cos(3x/2)cos(x/2)-sin(3x/2)sin(x/2)-2sinxcosx.
=cos(3x/2+x/2)-sin2x
=cos2x-sin2x
=√2cos(2x+π/4)
(1)函数f(x)的最小正周期是2π/2=π
(2) f(x)=0 2x+π/4=kπ+π/2 x=(kπ+π/4)/2
π/2<=(kπ+π/4)/2<=π
π<=kπ+π/4<=2π 3/4<=k<=7/4 k=1 x=5π/8
当x∈[π/2,π],函数f(x)=0的根是:x=5π/8
=cos(3x/2+x/2)-sin2x
=cos2x-sin2x
=√2cos(2x+π/4)
(1)函数f(x)的最小正周期是2π/2=π
(2) f(x)=0 2x+π/4=kπ+π/2 x=(kπ+π/4)/2
π/2<=(kπ+π/4)/2<=π
π<=kπ+π/4<=2π 3/4<=k<=7/4 k=1 x=5π/8
当x∈[π/2,π],函数f(x)=0的根是:x=5π/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=cos(3x/2)cos(x/2)-sin(3x/2)sin(x/2)-2sinxcosx=cos(3x/2+x/2)-sin2x
=cos2x-sin2x=根号2cos(2x+π/4)
所以f(x)的最小正周期=2π/2=π;
x∈[π/2,π],2x∈[π,2π],2x+π/4∈[5π/4,9π/4],
f(x)=0; cos(2x+π/4)=0;
2x+π/4=3π/2
x=5π/8
=cos2x-sin2x=根号2cos(2x+π/4)
所以f(x)的最小正周期=2π/2=π;
x∈[π/2,π],2x∈[π,2π],2x+π/4∈[5π/4,9π/4],
f(x)=0; cos(2x+π/4)=0;
2x+π/4=3π/2
x=5π/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=cos(3x/2+x/2)-sin2x
=cos2x-sin2x
=√2(√2/2cos2x-√2/2sin2x)
=√2(cos(π/4+2x))
(1) T=2π/2=π
(2) x∈[π/2,π] π=<2x<2π 5π/4=<π/4+2x<=9π/4
f(x)=√2cos(π/4+2x)=0
π/4+2x=3π/2
x=5π/8
=cos2x-sin2x
=√2(√2/2cos2x-√2/2sin2x)
=√2(cos(π/4+2x))
(1) T=2π/2=π
(2) x∈[π/2,π] π=<2x<2π 5π/4=<π/4+2x<=9π/4
f(x)=√2cos(π/4+2x)=0
π/4+2x=3π/2
x=5π/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=cos(3x/2+x/2)=cos2x
∴最小正周期是2π/2=π;在[π/2,π]上,若f(x)=0,则x=π/4
∴最小正周期是2π/2=π;在[π/2,π]上,若f(x)=0,则x=π/4
追问
可以详细点吗?
追答
f(x)=cos(3x/2+x/2)-2sinxcosx
=cos2x-sin2x
=√2cos(2x+π/4)
∴最小正周期是2π/2=π;
x∈[π/2,π]上,∴2x+π/4∈[5π/4,9π/4],∴使得f(x)=0的点是2x+π/4=3π/2,解得x=5π/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询