已知tanα+1/tanα=9/4,则tanα^2+1/sinαcosα+1/tanα^2=?

leoyan7
2012-10-02 · TA获得超过8336个赞
知道大有可为答主
回答量:1843
采纳率:33%
帮助的人:2454万
展开全部
tan²α+1/sinαcosα+1/tan²α
= tan²α+(sin²a+cos²a)/sinαcosα+(1/tan²α)
= tan²α+(tan²α+1)/tana+(1/tan²α) (同时除以cos²a)
=tan²α+tanα+(1/tana)+(1/tan²α)
因为tanα+1/tanα=9/4
同时平方得 tan²α+1+(1/tan²α)=81/16
即tan²α+(1/tan²α)=65/16
所以 tan²α+tanα+(1/tana)+(1/tan²α)= 65/16+ 9/4= 101/ 16
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式