等差数列An=2n+1 Bn=1/An^2-1 求Bn前N项和Tn
展开全部
解:Bn=1/An^2-1=1/[(2n+1)^2-1]=1/(4n^2+4n)=1/4*1/[n*(n+1)]
又∵1/[n*(n+1)]=1/n-1/(n+1)]
∴Tn=1/4*[1/1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1)]
=1/4*[1/1-1/(n+1)]
=1/4*[(n+1)/(n+1)-1/(n+1)]
=1/4*[(n+1-1)/(n+1)]
=n/(4n+4)
有什么不懂的请追问,我会为您详细解答,望采纳,谢谢!
又∵1/[n*(n+1)]=1/n-1/(n+1)]
∴Tn=1/4*[1/1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1)]
=1/4*[1/1-1/(n+1)]
=1/4*[(n+1)/(n+1)-1/(n+1)]
=1/4*[(n+1-1)/(n+1)]
=n/(4n+4)
有什么不懂的请追问,我会为您详细解答,望采纳,谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询