等差数列An=2n+1 Bn=1/An^2-1 求Bn前N项和Tn

Believe47
2012-10-03 · TA获得超过1984个赞
知道小有建树答主
回答量:365
采纳率:0%
帮助的人:438万
展开全部
解:Bn=1/An^2-1=1/[(2n+1)^2-1]=1/(4n^2+4n)=1/4*1/[n*(n+1)]
又∵1/[n*(n+1)]=1/n-1/(n+1)]
∴Tn=1/4*[1/1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1)]
=1/4*[1/1-1/(n+1)]
=1/4*[(n+1)/(n+1)-1/(n+1)]
=1/4*[(n+1-1)/(n+1)]

=n/(4n+4)
有什么不懂的请追问,我会为您详细解答,望采纳,谢谢!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式