
初速度为零的匀加速直线运动通过连续相等的位移的速度之比
2012-10-03
展开全部
对于初速度为零的匀加速直线运动
根据
v=at
s=1/2at^2可得:
(1)第1秒末、第2秒末、……、第n秒末的速度之比 V1:V2:V3……:Vn=1:2:3:……:n。
(2)前1秒内、前2秒内、……、前n秒内的位移之比 s1:s2:s3:……sn=1:4:9……:n2。
(3)第t时间内、第2t时间内、……、第nt时间内的位移之比 sⅠ:sⅡ:sⅢ……:sN=1:3:5:……:(2n-1)。
(4)通过前s、前2s、前3s……、前ns内所需时间之比 t1:t2:……:tn=1:√2:√3……:√n。
(5)过1s、2s、3s、……、第ns所需时间之比 tⅠ:tⅡ:tⅢ……tN=1:(√2-1):(√3-√2)……:(√n-√n-1)
根据
v=at
s=1/2at^2可得:
(1)第1秒末、第2秒末、……、第n秒末的速度之比 V1:V2:V3……:Vn=1:2:3:……:n。
(2)前1秒内、前2秒内、……、前n秒内的位移之比 s1:s2:s3:……sn=1:4:9……:n2。
(3)第t时间内、第2t时间内、……、第nt时间内的位移之比 sⅠ:sⅡ:sⅢ……:sN=1:3:5:……:(2n-1)。
(4)通过前s、前2s、前3s……、前ns内所需时间之比 t1:t2:……:tn=1:√2:√3……:√n。
(5)过1s、2s、3s、……、第ns所需时间之比 tⅠ:tⅡ:tⅢ……tN=1:(√2-1):(√3-√2)……:(√n-√n-1)

2024-07-24 广告
介电常数,简称ε,是衡量材料在电场中电介质性能的重要物理量。它描述了材料对电场的响应能力,定义为电位移D与电场强度E之比,即ε=D/E。介电常数越大,材料在电场中的极化程度越高,存储电荷能力越强。在电子和电气工程领域,介电常数对于理解和设计...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |