4个回答
展开全部
不是的,物理对我们是很有用的!!我最爱物理了
本专业主要培养掌握物理学基本理论与方法,具有良好的数学基础和基本实验技能,掌握电子技术、计算机技术、光纤通信技术、生物医学物理等方面的应用基础知识、基本实验方法和技术,能在物理学、邮电通信、航空航天、能源开发、计算机技术及应用、光电子技术、医疗保健、自动控制等相关高校技术领域从事科研、教学、技术开发与应用、管理等工作的高级专门人才。
一、专业基本情况
1、培养目标
本专业培养掌握物理学的基本理论与方法,能在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作的高级专门人才。
2、培养要求
本专业学生主要学习物理学的基本理论与方法,具有良好的数学基础和实验技能,受到应用基础研究、应用研究和技术开发以及工程技术的初步训练,具有良好的科学素养,适应高新技术发展的需要,具有较强的知识更新能力和较广泛的科学适应能力。毕业生应获得以下几方面的知识和能力:
◆ 掌握系统的数学、计算机等方面的基本原理、基本知识;
◆ 掌握较坚实的物理学基础理论、较广泛的应用物理知识、基本实验方法和技能;具备运用物理学中某一专门方向的知识和技能进行技术开发、应用研究、教学和相应管理工作的能力;
◆ 了解相近专业以及应用领域的一般原理和知识;
◆ 了解我国科学技术、知识产权等方面的方针、政策和法规;
◆ 了解应用物理的理论前沿、应用前景和最新发展动态以及相关高新技术产业的发展状况;
◆ 掌握资料查询、文献检索及运用现代信息技术获取最新参考文献的基本方法;
◆ 具有一定的实验设计,创造实验条件,归纳,整理、分析实验结果,撰写论文,参与学术交流的能力。
3、主干学科
物理学。
4、主要课程
高等数学、普通物理学、电子线路、理论物理、结构与物性、材料物理、固体物理学、机械制图等课程。
5、实践教学
根据课程要求,安排与应用领域有关的教学实习。包括生产实习,科研训练或毕业论文等,一般安排10—20周。
6、修业时间
4年。
7、学位情况
理学或工学学士。
8、相关专业
物理学。
9、原专业名
应用物理学、声学、原子核物理学及核技术(部分)、工程物理。
二、专业综合介绍
应用物理学,顾名思义,就是以应用为目的的物理学专业。以物理学的基本规律、实验方法及最新成就为基础,来研究物理学应用。应用物理学是当今高新技术发展的基础,是多种技术学科的支柱。其目的是便于将理论物理研究的成果尽快转化为现实的生产力,并反过来推动理论物理的进步。
应用物理学虽然是以古老的物理学作为基础建立的,但它属于比较年轻的专业,特别是近些年的发展十分迅速。华裔诺贝尔物理奖得主杨振宁教授认为,当前和以后的几十年内物理学的重心在于应用物理学。应用物理学和理论物理学一个很大的不同点,就是两者的研究方法不同。理论物理学更多地依赖于数学和物理,主要是通过思考和推导来获得进步。而应用物理学涉及到的是一些非常具体的问题,一般都是采取实验的方法来进行研究。和理论物理学一样,应用物理学的范围涉及到物理的方方面面。目前应用物理学发展比较快的主要是一些新兴的技术性行业,例如电子科学、计算机科学等。这样的行业也是物理学理论转化为应用要求最急切的,比如能够将物理电磁学方面的理论,转化在电子和计算机方面的话,将会为这些行业的发展提供非常强大的动力支持。
现在以及未来的社会中,必将要求理论研究的结果能更快、更直接地转化为现实生产力。能够将理论转化为实际应用的专业人才逐渐走俏。但就其专业特点来说,应用物理学需要使用到的研究方法主要是实验,所以对于学生的实验能力要求比较高,这不仅是对动手能力的要求,同时也要求有一种严谨的科学研究态度。对于物理学有浓厚兴趣,有一贯严谨的学习态度,具有较强地动手和实验能力的学生,可以在本专业的学习中取得很好的成绩。对于热爱物理学,但又不适合或是不愿意做纯理论研究的学生,对于喜欢自己的工作和科研成果可以实实在在地被应用的学生,本专业是一个非常理想的选择。不过考生在报考时应该注意,本专业虽然是应用类的专业,但在本科学习期间,由于专业涵盖范围广,理论学习仍占很重要的部分,同样要有大量比较艰深的理论课程,报考者应该有充分的信心,能够圆满地完成理论课程的学习,为进一步学习和研究打下坚实的基础。另外,作为应用型专业,在一些院校的招生中,对于色盲和色弱的学生有所限制。
本专业目前发展迅速,成为物理学科中最为实用和热门的专业。国内高等院校纷纷开设自己的应用物理学专业。这为广大的学生提供了很好的机会。但一些院校的应用物理学系,有其名而无其实,对应用方面的重视远远不够。如果是一心想向应用方向发展的考生,最好还是仔细选择一个有较丰富经验的学校。本专业有较强的社会适应性,毕业生既具有从事基础科学研究的基础知识,也具有在应用物理技术、电子信息技术等领域从事高科技开发的实际业务能力,适合在工业、交通、邮电、金融;商业等行业从事科技开发、生产和管理工作。本专业学生所特有的专业素养,使他们具有持久的专业发展后劲和较强的开拓能力,因而深受社会各界的欢迎。
应用物理学专业代码:070202。
三、专业教育发展状况
各高校对应用物理学系的提法有所区别,应用物理,工程物理,或者核技术专业等,都是包含在应用物理专业当中的。
随着19世纪末,20世纪初物理学的进步,以及核技术的崛起,应用物理专业逐渐作为一个单独的学科从物理专业中细分出来,应用物理专业更强调物理学在国民工业当中的应用,物理专业则侧重于理论的研究。我国有的高校的物理系则是既包含物理学专业,也包含了应用物理专业。
我国大部分高校都设有应用物理专业,并且也有比较长久的历史。1926年,清华大学物理系成立。许多著名物理学家如叶企孙、吴有训、任之恭、周培源等教授都曾在物理系任教。清华物理系培养出了不少著名科学家,如王淦昌、钱伟长、周光召等是其中的优秀代表。诺贝尔物理学奖获得者:李政道、杨振宁博士都曾在清华物理系学习过。解放以来,应用物理专业作为物理系的一个专业方向,在各大高校逐渐设立,几乎所有的高等学府都建立了物理学系,其中据不完全统计,设有应用物理专业的院校共有170余所。
解放以后,我国曾进行了大规模院系调整,很多原工科院校的物理系合并调整,有的工科院校干脆就不再设物理学专业,只留下部分物理教学人员。另一方面,根据国务院的指示,为培养理工结合的新型人才,开创和发展我国的原子能科学技术,在部分学校成立了工程物理系。当时的工程物理系或者应用物理系基本上相当于现在的核工程与核技术专业。现在仍旧能够看到这一遗留现象,很多应用物理专业的主要研究领域仍旧是核专业。
目前,我国很多高校提出建设一流的综合性大学,在这种背景之下,很多高校恢复了物理系或者应用物理系。现在我国大多数高等院校都设有应用物理系,或者在物理系内设应用物理专业,一大批理工结合的人才从应用物理专业涌现出来,近10年来应用物理专业又大力加强了电子技术和计算机技术方面的基础研究。如现在我国的北京大学物理系、中科大的应用物理专业、上海交通大学应用物理系、西安交通大学的理学院应用物理专业、北京科技大学(原北京钢铁学院)应用物理专业、中科院物理所等等。
国际上最著名的学府如美国麻省理工学院、美国宾夕法尼亚大学、英国剑桥大学、日本的东京大学等都设有应用物理专业(AppliedPhysics),主要研究的课题包括核技术、宇航技术、固体物理、凝聚态物理、声、光、电学的基础开发和应用等。
四、专业就业状况及趋势
应用物理学专业的毕业生主要在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作。科研工作包括物理前沿问题的研究和应用,技术开发工作包括新特性物理应用材料如半导体等,应用仪器的研制如医学仪器、生物仪器、科研仪器等。应用物理专业的就业范围涵盖了整个物理和工程领域,融物理理论和实践于一体,并与多门学科相互渗透。
应用物理学专业的学生如具有扎实的物理理论的功底和应用方面的经验,能够在很多工程技术领域成为专家。我国每年培养本科应用物理专业人才约12000人。和该专业存在交叉的专业包括物理专业,工程物理专业,半导体和材料专业等。人才需求方面,我国对应用物理专业的人才需求仍旧是供不应求。
应用物理学专业的人才也存在一些问题,该专业的人才虽然就业面比较广,但是往往竞争力不够强,例如虽然他们可能也对半导体材料有一些研究,但是研究的深度比起半导体专业的人才又有一些差距。因此,往往在竞争最好公司的研发部门中,处于下风。也正因如此,人们认为学习应用物理,找到的工作环境一般不会太好,不过这在一定程度上有些夸大其实。有很多IT产业的公司如IBM、朗讯等,对应用物理行业的人才仍旧独有垂青。改革开放以来,我国东部沿海地区的经济中的某些行业,正在逐渐从劳动密集型向技术密集型和资金密集型发展,他们对基础技术的需求越来越大,这些技术虽然大部分从国外进口,但是掌握这些技术,操作这些技术载体的仪器,仍旧需要大量的应用物理专业的人才。这些技术密集型的企业现在大多集中于我国的东部沿海地区,随着新一轮的技术革命,将促进应用物理专业的研究继续向纵深方向发展。
目前,很多应用物理研究的课题仍旧是基础性的,往往需要大量的政府的政策性投入,难以实现产业化,这对于打算毕业后从事应用物理研究的人员来说,是应该做好思想准备的。但是近年来,随着科学发展速度的增快,很多应用物理行业研究出的前沿技术很快便得到了应用,例如中微子通信,就是目前热门课题之一。随着现在学科交叉与学科细分现象的日益明显,知识的更新程度非常快。像应用物理这样基础性专业的人才,由于其可塑性强,基础知识扎实,反而越来越能得到各个行业的重视。
作为一门基础学科的应用科学,近年来我国在应用物理学研究领域内取得了很大的发展,在很多领域内对其它学科也起到很好的促进作用,其中包括信息科学、材料科学、生命科学、能源与环境科学等。单晶硅技术的研究,为我国硬件产业的赶超提供了很好的支持。物理学研究材料的手段,如材料的电磁性能,光性能等,成为材料研究的基础。这些使得应用物理专业的人才在从事具体的科研工作时得心应手。目前,大部分应用物理专业的人才主要集中于以上所述高新技术开发部门,而作为物理的基础教育领域,则少有人问津,我国实际上急需一批应用物理专业的人才从事我国基础物理教育事业。那些有报负的应用物理专业学生,也应该敢于投身于基础教育领域,充分发挥自身的特长。
很多学科脱胎于物理技术的应用,现在又反过来为应用物理的研究创造了更好的条件,计算机技术目前正在逐渐渗入应用物理领域,计算机模拟物理实验,节省了大量的人力物力,这将为应用物理在新世纪迅速发展插翅添翼。因此,应用物理专业的人才应该发挥自身的优势,并且有意识地培养自己多学科的学术素质,这将为自己的事业铺上一条康庄大道。应用物理专业的学生应该注意发挥自身理工结合的特点。在个人动手能力方面进行培养,通过大量的物理学实验,增强自己基础理论的理解。另一方面,学生应该注重学习计算机知识,能够熟练的将计算机应用于工作当中,这样,才能更加发挥应用物理专业人才的优势,在各个领域内生根。
毕业后从事需要坚实的物理理论基础和动手能力的工作,扎实的理论知识以及应用能力,是很多企业任何时候都需要的人才:
技术工程师——企业的工程技术工程师;
教师——从事应用物理相关教育的教师;
发明家——应用物理专业是最富产发明家的地方。
本专业主要培养掌握物理学基本理论与方法,具有良好的数学基础和基本实验技能,掌握电子技术、计算机技术、光纤通信技术、生物医学物理等方面的应用基础知识、基本实验方法和技术,能在物理学、邮电通信、航空航天、能源开发、计算机技术及应用、光电子技术、医疗保健、自动控制等相关高校技术领域从事科研、教学、技术开发与应用、管理等工作的高级专门人才。
一、专业基本情况
1、培养目标
本专业培养掌握物理学的基本理论与方法,能在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作的高级专门人才。
2、培养要求
本专业学生主要学习物理学的基本理论与方法,具有良好的数学基础和实验技能,受到应用基础研究、应用研究和技术开发以及工程技术的初步训练,具有良好的科学素养,适应高新技术发展的需要,具有较强的知识更新能力和较广泛的科学适应能力。毕业生应获得以下几方面的知识和能力:
◆ 掌握系统的数学、计算机等方面的基本原理、基本知识;
◆ 掌握较坚实的物理学基础理论、较广泛的应用物理知识、基本实验方法和技能;具备运用物理学中某一专门方向的知识和技能进行技术开发、应用研究、教学和相应管理工作的能力;
◆ 了解相近专业以及应用领域的一般原理和知识;
◆ 了解我国科学技术、知识产权等方面的方针、政策和法规;
◆ 了解应用物理的理论前沿、应用前景和最新发展动态以及相关高新技术产业的发展状况;
◆ 掌握资料查询、文献检索及运用现代信息技术获取最新参考文献的基本方法;
◆ 具有一定的实验设计,创造实验条件,归纳,整理、分析实验结果,撰写论文,参与学术交流的能力。
3、主干学科
物理学。
4、主要课程
高等数学、普通物理学、电子线路、理论物理、结构与物性、材料物理、固体物理学、机械制图等课程。
5、实践教学
根据课程要求,安排与应用领域有关的教学实习。包括生产实习,科研训练或毕业论文等,一般安排10—20周。
6、修业时间
4年。
7、学位情况
理学或工学学士。
8、相关专业
物理学。
9、原专业名
应用物理学、声学、原子核物理学及核技术(部分)、工程物理。
二、专业综合介绍
应用物理学,顾名思义,就是以应用为目的的物理学专业。以物理学的基本规律、实验方法及最新成就为基础,来研究物理学应用。应用物理学是当今高新技术发展的基础,是多种技术学科的支柱。其目的是便于将理论物理研究的成果尽快转化为现实的生产力,并反过来推动理论物理的进步。
应用物理学虽然是以古老的物理学作为基础建立的,但它属于比较年轻的专业,特别是近些年的发展十分迅速。华裔诺贝尔物理奖得主杨振宁教授认为,当前和以后的几十年内物理学的重心在于应用物理学。应用物理学和理论物理学一个很大的不同点,就是两者的研究方法不同。理论物理学更多地依赖于数学和物理,主要是通过思考和推导来获得进步。而应用物理学涉及到的是一些非常具体的问题,一般都是采取实验的方法来进行研究。和理论物理学一样,应用物理学的范围涉及到物理的方方面面。目前应用物理学发展比较快的主要是一些新兴的技术性行业,例如电子科学、计算机科学等。这样的行业也是物理学理论转化为应用要求最急切的,比如能够将物理电磁学方面的理论,转化在电子和计算机方面的话,将会为这些行业的发展提供非常强大的动力支持。
现在以及未来的社会中,必将要求理论研究的结果能更快、更直接地转化为现实生产力。能够将理论转化为实际应用的专业人才逐渐走俏。但就其专业特点来说,应用物理学需要使用到的研究方法主要是实验,所以对于学生的实验能力要求比较高,这不仅是对动手能力的要求,同时也要求有一种严谨的科学研究态度。对于物理学有浓厚兴趣,有一贯严谨的学习态度,具有较强地动手和实验能力的学生,可以在本专业的学习中取得很好的成绩。对于热爱物理学,但又不适合或是不愿意做纯理论研究的学生,对于喜欢自己的工作和科研成果可以实实在在地被应用的学生,本专业是一个非常理想的选择。不过考生在报考时应该注意,本专业虽然是应用类的专业,但在本科学习期间,由于专业涵盖范围广,理论学习仍占很重要的部分,同样要有大量比较艰深的理论课程,报考者应该有充分的信心,能够圆满地完成理论课程的学习,为进一步学习和研究打下坚实的基础。另外,作为应用型专业,在一些院校的招生中,对于色盲和色弱的学生有所限制。
本专业目前发展迅速,成为物理学科中最为实用和热门的专业。国内高等院校纷纷开设自己的应用物理学专业。这为广大的学生提供了很好的机会。但一些院校的应用物理学系,有其名而无其实,对应用方面的重视远远不够。如果是一心想向应用方向发展的考生,最好还是仔细选择一个有较丰富经验的学校。本专业有较强的社会适应性,毕业生既具有从事基础科学研究的基础知识,也具有在应用物理技术、电子信息技术等领域从事高科技开发的实际业务能力,适合在工业、交通、邮电、金融;商业等行业从事科技开发、生产和管理工作。本专业学生所特有的专业素养,使他们具有持久的专业发展后劲和较强的开拓能力,因而深受社会各界的欢迎。
应用物理学专业代码:070202。
三、专业教育发展状况
各高校对应用物理学系的提法有所区别,应用物理,工程物理,或者核技术专业等,都是包含在应用物理专业当中的。
随着19世纪末,20世纪初物理学的进步,以及核技术的崛起,应用物理专业逐渐作为一个单独的学科从物理专业中细分出来,应用物理专业更强调物理学在国民工业当中的应用,物理专业则侧重于理论的研究。我国有的高校的物理系则是既包含物理学专业,也包含了应用物理专业。
我国大部分高校都设有应用物理专业,并且也有比较长久的历史。1926年,清华大学物理系成立。许多著名物理学家如叶企孙、吴有训、任之恭、周培源等教授都曾在物理系任教。清华物理系培养出了不少著名科学家,如王淦昌、钱伟长、周光召等是其中的优秀代表。诺贝尔物理学奖获得者:李政道、杨振宁博士都曾在清华物理系学习过。解放以来,应用物理专业作为物理系的一个专业方向,在各大高校逐渐设立,几乎所有的高等学府都建立了物理学系,其中据不完全统计,设有应用物理专业的院校共有170余所。
解放以后,我国曾进行了大规模院系调整,很多原工科院校的物理系合并调整,有的工科院校干脆就不再设物理学专业,只留下部分物理教学人员。另一方面,根据国务院的指示,为培养理工结合的新型人才,开创和发展我国的原子能科学技术,在部分学校成立了工程物理系。当时的工程物理系或者应用物理系基本上相当于现在的核工程与核技术专业。现在仍旧能够看到这一遗留现象,很多应用物理专业的主要研究领域仍旧是核专业。
目前,我国很多高校提出建设一流的综合性大学,在这种背景之下,很多高校恢复了物理系或者应用物理系。现在我国大多数高等院校都设有应用物理系,或者在物理系内设应用物理专业,一大批理工结合的人才从应用物理专业涌现出来,近10年来应用物理专业又大力加强了电子技术和计算机技术方面的基础研究。如现在我国的北京大学物理系、中科大的应用物理专业、上海交通大学应用物理系、西安交通大学的理学院应用物理专业、北京科技大学(原北京钢铁学院)应用物理专业、中科院物理所等等。
国际上最著名的学府如美国麻省理工学院、美国宾夕法尼亚大学、英国剑桥大学、日本的东京大学等都设有应用物理专业(AppliedPhysics),主要研究的课题包括核技术、宇航技术、固体物理、凝聚态物理、声、光、电学的基础开发和应用等。
四、专业就业状况及趋势
应用物理学专业的毕业生主要在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作。科研工作包括物理前沿问题的研究和应用,技术开发工作包括新特性物理应用材料如半导体等,应用仪器的研制如医学仪器、生物仪器、科研仪器等。应用物理专业的就业范围涵盖了整个物理和工程领域,融物理理论和实践于一体,并与多门学科相互渗透。
应用物理学专业的学生如具有扎实的物理理论的功底和应用方面的经验,能够在很多工程技术领域成为专家。我国每年培养本科应用物理专业人才约12000人。和该专业存在交叉的专业包括物理专业,工程物理专业,半导体和材料专业等。人才需求方面,我国对应用物理专业的人才需求仍旧是供不应求。
应用物理学专业的人才也存在一些问题,该专业的人才虽然就业面比较广,但是往往竞争力不够强,例如虽然他们可能也对半导体材料有一些研究,但是研究的深度比起半导体专业的人才又有一些差距。因此,往往在竞争最好公司的研发部门中,处于下风。也正因如此,人们认为学习应用物理,找到的工作环境一般不会太好,不过这在一定程度上有些夸大其实。有很多IT产业的公司如IBM、朗讯等,对应用物理行业的人才仍旧独有垂青。改革开放以来,我国东部沿海地区的经济中的某些行业,正在逐渐从劳动密集型向技术密集型和资金密集型发展,他们对基础技术的需求越来越大,这些技术虽然大部分从国外进口,但是掌握这些技术,操作这些技术载体的仪器,仍旧需要大量的应用物理专业的人才。这些技术密集型的企业现在大多集中于我国的东部沿海地区,随着新一轮的技术革命,将促进应用物理专业的研究继续向纵深方向发展。
目前,很多应用物理研究的课题仍旧是基础性的,往往需要大量的政府的政策性投入,难以实现产业化,这对于打算毕业后从事应用物理研究的人员来说,是应该做好思想准备的。但是近年来,随着科学发展速度的增快,很多应用物理行业研究出的前沿技术很快便得到了应用,例如中微子通信,就是目前热门课题之一。随着现在学科交叉与学科细分现象的日益明显,知识的更新程度非常快。像应用物理这样基础性专业的人才,由于其可塑性强,基础知识扎实,反而越来越能得到各个行业的重视。
作为一门基础学科的应用科学,近年来我国在应用物理学研究领域内取得了很大的发展,在很多领域内对其它学科也起到很好的促进作用,其中包括信息科学、材料科学、生命科学、能源与环境科学等。单晶硅技术的研究,为我国硬件产业的赶超提供了很好的支持。物理学研究材料的手段,如材料的电磁性能,光性能等,成为材料研究的基础。这些使得应用物理专业的人才在从事具体的科研工作时得心应手。目前,大部分应用物理专业的人才主要集中于以上所述高新技术开发部门,而作为物理的基础教育领域,则少有人问津,我国实际上急需一批应用物理专业的人才从事我国基础物理教育事业。那些有报负的应用物理专业学生,也应该敢于投身于基础教育领域,充分发挥自身的特长。
很多学科脱胎于物理技术的应用,现在又反过来为应用物理的研究创造了更好的条件,计算机技术目前正在逐渐渗入应用物理领域,计算机模拟物理实验,节省了大量的人力物力,这将为应用物理在新世纪迅速发展插翅添翼。因此,应用物理专业的人才应该发挥自身的优势,并且有意识地培养自己多学科的学术素质,这将为自己的事业铺上一条康庄大道。应用物理专业的学生应该注意发挥自身理工结合的特点。在个人动手能力方面进行培养,通过大量的物理学实验,增强自己基础理论的理解。另一方面,学生应该注重学习计算机知识,能够熟练的将计算机应用于工作当中,这样,才能更加发挥应用物理专业人才的优势,在各个领域内生根。
毕业后从事需要坚实的物理理论基础和动手能力的工作,扎实的理论知识以及应用能力,是很多企业任何时候都需要的人才:
技术工程师——企业的工程技术工程师;
教师——从事应用物理相关教育的教师;
发明家——应用物理专业是最富产发明家的地方。
展开全部
增加生活的小智慧,让自己变得更睿智。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
提高科学文化水平,以适应科技普及的时代
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我也是学物理的,给你粘贴一篇文章,但愿有帮助
(一)物理学专业的历史及现状
从十六世纪中叶开始,物理学经历了几次重大突破后,形成了一整套比较完整的经典物理学理论体系。它在实践中显示了强大的威力,获得重大成果。它不仅有力地推动生产力的发展;而且对于当时发现的物理现象几乎都可以作出令人信服的解释与科学的预言。例如:
1.伽里略、牛顿建立了经典力学体系,发现了万有引力定律。笔尖下发现了海王星、冥王星,对哈雷彗星76年回归一次的周期性进行了准确的预测。
2.起源于卡诺对蒸气机效率的研究,经焦耳,亥姆霍兹及开尔文的工作,最后由德国的克劳修斯系统化建立了热力学;玻尔兹曼,吉布斯等建立了统计物理学。热机效率的大大提高;二类永动机的寿终正寝。
3.从奥斯特发现电流的磁效应,安培提出的分子电流假设,到法拉第发现电磁感应定律,最后由麦克斯韦总结并提出位移电流假定,建立了完整的电磁理论体系。法拉第发现电磁感应定律,制作了第一台电动机;麦克斯韦从理论上预言了电磁波的存在;赫兹在实验上发现了电磁波。电力工程、电磁通讯的飞速发展。
4.光的波动说得到实验与理论的支持。
可以说,十九世纪末,二十世纪初,经典物理学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学的发展达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。
然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到了巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!
20世纪以古典物理学为基础产生了一系列重要的发明,如成功发射了无线电波,提出了克服地球引力进入太空的设想,第一次传输电视图像,超声技术在医疗中得以应用,激光唱盘问世等。物理学家发现了有关物质的各种形态的新现象,如超导现象。物理学还为生物、地学、农业提供了强大的探测手段和研究方法,为医学开发了全新的诊断和治疗设备。在量子力学和相对论的指导下,物理学创造了崭新的探测和控制原子的手段,为纳米科学技术的研究提供了有力工具。
20世纪的物理学的研究对象日益增多,研究范围越来越大,大量学科从物理学中分化出来,形成了新的独立学科。物理学融入基础科学,产生了诸多新兴交叉学科。作为重要的基础学科,物理学还带动了化学、天文、应用数学、材料、能源、信息等学科的发展。
物理学在半导体、集成电路、激光、磁性、超导等方面的发现奠定了信息革命的科学基础。由物理学衍生的高新技术产业,在20世纪下半叶的全球经济中扮演了重要的角色。它引导了以微电子、光电子、网络和微光机电技术为核心的第三次工业革命,为信息社会的到来奠定了技术基础。由物理学研究带来的新技术和新产品层出不穷,从根本上改变了生产方式和人们的生活方式。
20世纪,企业的中央研究所(室)在世界上已经成为应用基础研究的重要力量,几项获得诺贝尔物理奖的重要发现,如晶体管、集成电路、高温超导等都是在大工业企业的中央研究室完成的。
如果把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间除了有相似之处以外,也有不同之处。
在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前的情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则性的问题都已经解决了,今后能做到的只是在现有理论的基础上,在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并没有严重到非要彻底改造现有理论不可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,多数学者认为目前发生现代物理学革命的条件似乎尚不成熟。
另外,客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。
(二)物理学专业在国内的发展历史及现状
我国大部分高校都设有物理专业,并且也有比较长久的历史。1926年,清华大学物理系成立。许多著名物理学家如叶企孙、吴有训、任之恭、周培源等教授都曾在物理系任教。清华物理系培养出了不少著名科学家,如王淦昌、钱伟长、周光召等是其中的优秀代表。诺贝尔物理学奖获得者:李政道、杨振宁博士都曾在清华物理系学习过。新中国成立后,几乎所有的高等学府都建立了物理学系,其中据不完全统计,设有物理专业的院校共有170余所。
新中国成立后,我国曾进行了大规模院系调整,很多原工科院校的物理系合并调整,有的工科院校干脆就不再设物理学专业,只留下部分物理教学人员。另一方面,根据国务院的指示,为培养理工结合的新型人才,开创和发展我国的原子能科学技术,在部分学校成立了工程物理系。当时的工程物理系或者应用物理系基本上相当于现在的核工程与核技术专业。现在仍旧能够看到这一遗留现象,有些应用物理专业的主要研究领域仍旧是核专业。
目前,我国很多高校提出建设一流的综合性大学,在这种背景之下,很多高校恢复了物理系或者应用物理系。现在我国有160多所高等院校开设有物理系,其中有80多所高等院校都设有应用物理系,或者在物理系内设应用物理专业,一大批理工结合的人才从应用物理专业涌现出来。近10年来应用物理专业又大力加强了电子技术和计算机技术方面的基础研究。如现在我国的北京大学物理系、中科大的应用物理专业、上海交通大学应用物理系、西安交通大学的理学院应用物理专业、北京科技大学(原北京钢铁学院)应用物理专业、中科院物理所等等。
从学科体系来看,经过近一个世纪不断的发展和完善,我国目前已经形成比较成熟的物理学学科体系。
物理学列为一级学科,其下有八个二级学科:(1) 理论物理。(2) 粒子物理及原子核物理。(3) 原子分子物理。(4) 凝聚态物理。(5) 光学。(6) 声学。(7) 等离子体物理。(8) 无线电物理。
从研究目的和方法上还可以把物理学分为:理论物理,实验物理和应用物理三个领域。其中粒子物理和原子核物理以及原子分子物理两个二级学科主要属于实验物理方面。最后面的五个二级学科大多研究方向以应用为主,可划归到应用物理领域。
理论物理本身可分为基础理论研究和应用理论研究两大部分。公众往往把这个小小的基础理论研究部分误认为是物理学本身了,这是因为从古到今成就物理学界耳熟能详的大师级人物基本都来自这个领域。基础理论研究就是一步一步深入探索寻找自然界最深层次的统一规律,它是整个物理学最前沿的最神秘,也是最挑战人类智慧的部分,其成果也是物理学最核心、最辉煌的,这些成果包括历史上的牛顿力学,麦克斯韦电磁理论,到二十世纪初的相对论和量子力学以及目前的量子场论和超弦,现在研究基础理论的学者们都是在做量子场论(既结合了相对论之后更深入的量子理论)及在场论基础上发展起来的超弦假说。
有一种或许有争议的说法,搞基础理论研究一般只有两个结果:一个是零,即成为后人成功的铺路石而终生默默无闻;另一个是无穷大,既成为诸如爱因斯坦、狄拉克、费曼、温博格或威藤等等那样的大师级人物。而能成为后者的毕竟是少数幸运天才,因此不但研究理论物理的人是所有研究物理的人中很少的一部分(小于 5%,在我国应该更少),搞基础理论的人在研究理论物理的人中也只是少部分,剩下的一大半做的是应用理论研究,这其中包括凝聚态理论,量子光学,原子分子理论等等,它们大多采用现成的量子理论来解释各自领域的内在物理机制,与基础理论研究最大的区别是它们停留在原子(确切地说是核外电子)的层面上,采用现有的量子理论解决问题,而对更深入的粒子本质不做探讨。由于应用理论研究很大程度上是对现有基础理论的复杂应用,于是它的研究方式不可避免地引入大量计算,甚至有人将计算物理看做物理学的又一分支。
谈完理论物理,下面说一说实验物理和应用物理。其实这两个领域并没有明显的界限。区别只是实验出的结果应用程度大小的问题。这里所说的实验物理主要是指高能物理( 即粒子物理),他的实验目的不是以应用而是以验证基础理论是否正确为主,并希望通过高能实验的某些新现象来促进基础理论的发展,这个领域最重要,也是最独特实验仪器便是“加速器”。建造加速器需要国家政府投入大量的财力物力,而且短期内在经济上很难得到回报,因此世界上除几个大国外其他国家都对它望而却步。这样就客观上导致了研究高能物理的人与研究理论物理的人一样成为物理学界为数很少的小团体。
谈到这里我不得不提出一个事实,那就是搞物理的人绝大多数是在研究应用物理,即研究领域与人类生活密切相关,比较容易将成果转化为应用技术的领域。在研究的过程中运用应用理论研究的成果来解决人类需要,并能反过来推动应用理论发展。凝聚态物理是现在物理学最大的分支领域,所谓凝聚态是指物质固态和液态的统称。在地球上与人类生活密切相关的物质除了阳光和空气其余都是以凝聚态的形式存在,这足以看出研究凝聚态物理对人类的重要性。凝聚态物理最早的重大成就是半导体的发现及应用,它最后产生的社会价值想必不用我多说了,只需大家看一眼身边这台电脑便见分晓。凝聚态物理有两个大名鼎鼎的热门方向,一个是“超导”,另一个是“纳米”。其他领域诸如软物质,准晶体,磁学等等,很可能酝酿着下一个重大的突破。可以肯定的是,作为物理学最大的分支方向,它已经逐渐发展为整个物理学的主干和中心,几乎有半数左右研究物理的人在这个领域辛勤地探索着。
前面说过原子分子物理目前主要停留在实验物理学阶段,单个原子对人类的意义虽然没有多个原子形成的凝聚态物质重要,但既然一切物质,除光以外都是由原子所构成,这个领域麻雀虽小却是五脏俱全,它与物理学乃至整个自然科学各个分支学科都有非常紧密的联系,而这些交叉领域,又恰恰是其最重要的应用领域。研究化学反应化合物本质的量子化学实质上就是分子物理学,研究DNA大分子的分子生物学实质上也是分子物理学的一个研究领域。由此可见这个学科的发展对其他的自然科学学科有多么重大的意义。
光也许是世界上最神奇的东西了,难怪古希伯莱人认为上帝先创造了光,然后才创造的万物。通常人们爱把所有物质分为狭义的由原子分子组成的“物质”,以及由光子作为载体的“ 能量”。毫不夸张地说物质世界一切能量传递的过程都是靠传递光子完成的(如果广义相对论和量子场论标准模型正确的话)。例如声、光、电、热、磁,声音和热量本质上可还原为电磁相互作用,而电磁相互作用本质上就是靠电荷吸收辐射光子来完成的。因为光是一切能量的载体,量子力学中的“量子”实际上指的就是光量子,即光子。光速是一切速度的极限,光子可以转化为正反粒子对,也许对光的本质的研究会直接触及物质世界最深层次的奥秘。然而光学的发展却完全偏离探索光本性的方向,光学目前是物理学最接近应用领域的一个分支,因为它的应用性太强了,在实际应用中即可成为能量的载体也可成为信息的载体。
激光的发现的重要性丝毫不亚于半导体,它使得光学发展为仅次于凝聚态物理的物理学第二大分支,并且目前比凝聚态物理更接近实际应用。这个分支的基础部分自然还是划归于物理学,但其应用研究部分很可能会继电子之后成为一门从物理学独立出去的学科。
声学是物理学的一个分支,主要是研究声波的产生、接收和传播,以及与各种物质的相互作用等。它在通信技术,无线电电子学,材料科学,海洋技术,环境科学,医学和生命科学等领域有广泛的应用前景。
等离子体是气体在极高温状态下形成的一种电离态,它跟原子分子物理联系的最为密切。虽然浩瀚宇宙中到处弥漫着等离子体构成的恒星,但由于在地球上很少出现,所以对它的研究长期不受重视,直到受控核聚变的研究采用了激光约束等离子体的办法,才使对等离子的研究有了十分重要的意义,一旦受控核聚变应用成功,将一劳永逸解决人类的能源问题。
谈到核聚变,就要说说核物理了,核物理的核子(质子,中子)探索部分,属于前面讲过的高能物理范畴,但它的应用部分对人类的影响却是更加深远。原子弹和氢弹的发明对人类是福是祸,也许只有若干个世纪以后才会有最后的答案。除了巨大的能量之外,核物理的其他一些成果例如核磁共振,以及中子散射等的应用对人类贡献也是十分重要的。
欧美国家习惯上都把天文学(宇宙学)纳入物理学的范畴,二十世纪在天文学领域有重大发现的几个人都获得了诺贝尔物理学奖。爱因斯坦的广义相对论的巨大成就使得天体物理在理论上很难有新的东西出现,只有那神秘的黑洞一直激发着霍金等大师的无尽创造力。这个方向越来越像高能物理,成了一门观察实验物理学,一个深入最微观领域,一个畅游于最宏观的宇宙,他们源源不断地给基础理论物理学家提供数据,共同寻求着万物一理的统一答案。最近由于暗物质和暗能量的出现,宇宙学研究正激发着研究基础理论的大师们酝酿着一个新的突破。
以上简要介绍了现今物理学的现状及发展方向,希望能够对同学们初步了解物理学有所帮助。物理专业的学生并不是出来都要像爱因斯坦一样从事世界最本质规律的探索,也不是都要像建国后老一辈物理家那样去大西北研究核武器。前面已经说过从事基础理论研究和从事核物理研究的人只是在物理专业的人中占有很少很少的一部分,大多数人都从事着凝聚态物理和光学这样与人类生产生活密切相关的领域做应用研究,现代物理学的主干和重心恰恰就是这些应用领域,整个世界都是如此。
本专业发展前景
回顾二十世纪物理学的发展,是在三个方向上前进的。有学者分析,在二十一世纪,物理学也将在这三个方向上继续向前发展。
(1)在微观方向上深入下去。 在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运动规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有能量强大得多的加速器,而这是非常艰巨的任务,所以有学者认为近期内在这个方向上难以有突破性的进展。
(2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说 ,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能优越得更多的、各个波段的太空天文望远镜,这是很艰巨的任务。
必须指出,作为对未知科学领域的一种探索的科学研究,在研究过程中,往往会存在多种观点,有时甚至是相互对立的观点或假设。比如,有学者对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而很多学者相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究了我们这个“宇宙”,当然只能得到近似的结果,把他们的研究结果延伸到“宇宙”,创生了触及遥远的未来,则失误更大。
(3)深入探索各层次间的联系。
这正是统计物理学研究的主要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得巨大发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入到了非线性科学的范畴。相信在二十一世纪非线性科学的发展应有广阔的前景。
上述的物理学的发展前景分析依然局限在现代物理学现有的理论框架内。在二十一世纪,物理学的基本理论应该怎样发展呢?现代物理学的革命将怎样发生呢?有学者认为可能有两个方面值得考虑:
(1)有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”,以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚没定论。
爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想,但是他努力探索了三十年,最终没有成功。有学者对此有不同的观点,根据辩证唯物主义的基本原理,一般认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”
客观世界也可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。或许将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。有学者认为,物理学与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的是关于复杂性研究的非线性科学的发展。
(2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口。
关于物理学的发展前景,不同的学者,会有不同的观点。下面,我们以诺贝尔物理学奖获得者杨振宁教授和李政道教授的观点,来结束我们关于物理学发展前景的展望。
“今后二三十年物理学的成就会远远不及100年前,每一门学科的发展都是有起伏的。在未来相当长的一段时间内,物理学不会在理论上有大的突破。”著名物理学家、诺贝尔奖得主杨振宁在参加2007年科协年会期间,对物理学的发展前景作出了这样的判断。
杨振宁认为,100年前有二三十年是物理学的黄金时代:19世纪末发现了电子、放射性衰变、X光,技术上的发展,实验室里的进步,使理论出现了很大的困惑。爱因斯坦等人提出了相对论、量子力学理论奠定了微观物理学的基础,使物理学进入一个全新的领域。而目前技术有了很大发展,但并没有带来理论上的大困惑,因此物理学不太可能再出现100年前那种飞跃式发展。杨振宁提醒大家,物理界没有更多的重大发现,并不是物理不重要。此时的物理学的很多新领域出现了,为我们打开了很多门,每一个门走进去都能大有作为。
回首20世纪,李政道认为20世纪物理学的发展可以简单归纳为:了解基本粒子就会了解大物质体的构造。而21世纪的物理学发展将是探求整体统一,物理与生物学和其他学科会有极紧密的关系。“在我看来,21世纪物理学的前景是:激发真空;微观和宏观物理的结合;制造象宇宙开始的状态;了解暗物质;了解类星体的能源;了解CP不对称的原理。”
李政道说20世纪的文明是微观的,而21世纪微观和宏观应结合成一体。在一百年前,汤姆逊发现电子,从那以后影响了我们这个世纪的物理思想,即大的是由小的组成的,小的是由更小的组成的,找到了最基本的粒子就知道了最大的构造。这个思想不仅影响了物理学,还影响到本世纪生物学的发展,要知道生物学就应该研究生物的基因,知道基因就可能会知道生命。20世纪是越微小越好,我们觉得小是操纵一切的。但现在我们发现其实并不然。小的粒子,是在很广泛的真空里,而真空很复杂,是个凝聚态,是有构造的。微观粒子和宏观真空实际上是分不开的,这两个必须同时处理。就造计算机而言,是不是越小的就越好呢?可能21世纪的计算机要的是较大的,是个凝聚态单位,这里的信息才更多。21世纪如果把微观和宏观整体地联系起来,这不光是影响物理学,也许会影响到生命的发展。
(一)物理学专业的历史及现状
从十六世纪中叶开始,物理学经历了几次重大突破后,形成了一整套比较完整的经典物理学理论体系。它在实践中显示了强大的威力,获得重大成果。它不仅有力地推动生产力的发展;而且对于当时发现的物理现象几乎都可以作出令人信服的解释与科学的预言。例如:
1.伽里略、牛顿建立了经典力学体系,发现了万有引力定律。笔尖下发现了海王星、冥王星,对哈雷彗星76年回归一次的周期性进行了准确的预测。
2.起源于卡诺对蒸气机效率的研究,经焦耳,亥姆霍兹及开尔文的工作,最后由德国的克劳修斯系统化建立了热力学;玻尔兹曼,吉布斯等建立了统计物理学。热机效率的大大提高;二类永动机的寿终正寝。
3.从奥斯特发现电流的磁效应,安培提出的分子电流假设,到法拉第发现电磁感应定律,最后由麦克斯韦总结并提出位移电流假定,建立了完整的电磁理论体系。法拉第发现电磁感应定律,制作了第一台电动机;麦克斯韦从理论上预言了电磁波的存在;赫兹在实验上发现了电磁波。电力工程、电磁通讯的飞速发展。
4.光的波动说得到实验与理论的支持。
可以说,十九世纪末,二十世纪初,经典物理学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学的发展达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。
然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到了巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!
20世纪以古典物理学为基础产生了一系列重要的发明,如成功发射了无线电波,提出了克服地球引力进入太空的设想,第一次传输电视图像,超声技术在医疗中得以应用,激光唱盘问世等。物理学家发现了有关物质的各种形态的新现象,如超导现象。物理学还为生物、地学、农业提供了强大的探测手段和研究方法,为医学开发了全新的诊断和治疗设备。在量子力学和相对论的指导下,物理学创造了崭新的探测和控制原子的手段,为纳米科学技术的研究提供了有力工具。
20世纪的物理学的研究对象日益增多,研究范围越来越大,大量学科从物理学中分化出来,形成了新的独立学科。物理学融入基础科学,产生了诸多新兴交叉学科。作为重要的基础学科,物理学还带动了化学、天文、应用数学、材料、能源、信息等学科的发展。
物理学在半导体、集成电路、激光、磁性、超导等方面的发现奠定了信息革命的科学基础。由物理学衍生的高新技术产业,在20世纪下半叶的全球经济中扮演了重要的角色。它引导了以微电子、光电子、网络和微光机电技术为核心的第三次工业革命,为信息社会的到来奠定了技术基础。由物理学研究带来的新技术和新产品层出不穷,从根本上改变了生产方式和人们的生活方式。
20世纪,企业的中央研究所(室)在世界上已经成为应用基础研究的重要力量,几项获得诺贝尔物理奖的重要发现,如晶体管、集成电路、高温超导等都是在大工业企业的中央研究室完成的。
如果把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间除了有相似之处以外,也有不同之处。
在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前的情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则性的问题都已经解决了,今后能做到的只是在现有理论的基础上,在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并没有严重到非要彻底改造现有理论不可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,多数学者认为目前发生现代物理学革命的条件似乎尚不成熟。
另外,客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。
(二)物理学专业在国内的发展历史及现状
我国大部分高校都设有物理专业,并且也有比较长久的历史。1926年,清华大学物理系成立。许多著名物理学家如叶企孙、吴有训、任之恭、周培源等教授都曾在物理系任教。清华物理系培养出了不少著名科学家,如王淦昌、钱伟长、周光召等是其中的优秀代表。诺贝尔物理学奖获得者:李政道、杨振宁博士都曾在清华物理系学习过。新中国成立后,几乎所有的高等学府都建立了物理学系,其中据不完全统计,设有物理专业的院校共有170余所。
新中国成立后,我国曾进行了大规模院系调整,很多原工科院校的物理系合并调整,有的工科院校干脆就不再设物理学专业,只留下部分物理教学人员。另一方面,根据国务院的指示,为培养理工结合的新型人才,开创和发展我国的原子能科学技术,在部分学校成立了工程物理系。当时的工程物理系或者应用物理系基本上相当于现在的核工程与核技术专业。现在仍旧能够看到这一遗留现象,有些应用物理专业的主要研究领域仍旧是核专业。
目前,我国很多高校提出建设一流的综合性大学,在这种背景之下,很多高校恢复了物理系或者应用物理系。现在我国有160多所高等院校开设有物理系,其中有80多所高等院校都设有应用物理系,或者在物理系内设应用物理专业,一大批理工结合的人才从应用物理专业涌现出来。近10年来应用物理专业又大力加强了电子技术和计算机技术方面的基础研究。如现在我国的北京大学物理系、中科大的应用物理专业、上海交通大学应用物理系、西安交通大学的理学院应用物理专业、北京科技大学(原北京钢铁学院)应用物理专业、中科院物理所等等。
从学科体系来看,经过近一个世纪不断的发展和完善,我国目前已经形成比较成熟的物理学学科体系。
物理学列为一级学科,其下有八个二级学科:(1) 理论物理。(2) 粒子物理及原子核物理。(3) 原子分子物理。(4) 凝聚态物理。(5) 光学。(6) 声学。(7) 等离子体物理。(8) 无线电物理。
从研究目的和方法上还可以把物理学分为:理论物理,实验物理和应用物理三个领域。其中粒子物理和原子核物理以及原子分子物理两个二级学科主要属于实验物理方面。最后面的五个二级学科大多研究方向以应用为主,可划归到应用物理领域。
理论物理本身可分为基础理论研究和应用理论研究两大部分。公众往往把这个小小的基础理论研究部分误认为是物理学本身了,这是因为从古到今成就物理学界耳熟能详的大师级人物基本都来自这个领域。基础理论研究就是一步一步深入探索寻找自然界最深层次的统一规律,它是整个物理学最前沿的最神秘,也是最挑战人类智慧的部分,其成果也是物理学最核心、最辉煌的,这些成果包括历史上的牛顿力学,麦克斯韦电磁理论,到二十世纪初的相对论和量子力学以及目前的量子场论和超弦,现在研究基础理论的学者们都是在做量子场论(既结合了相对论之后更深入的量子理论)及在场论基础上发展起来的超弦假说。
有一种或许有争议的说法,搞基础理论研究一般只有两个结果:一个是零,即成为后人成功的铺路石而终生默默无闻;另一个是无穷大,既成为诸如爱因斯坦、狄拉克、费曼、温博格或威藤等等那样的大师级人物。而能成为后者的毕竟是少数幸运天才,因此不但研究理论物理的人是所有研究物理的人中很少的一部分(小于 5%,在我国应该更少),搞基础理论的人在研究理论物理的人中也只是少部分,剩下的一大半做的是应用理论研究,这其中包括凝聚态理论,量子光学,原子分子理论等等,它们大多采用现成的量子理论来解释各自领域的内在物理机制,与基础理论研究最大的区别是它们停留在原子(确切地说是核外电子)的层面上,采用现有的量子理论解决问题,而对更深入的粒子本质不做探讨。由于应用理论研究很大程度上是对现有基础理论的复杂应用,于是它的研究方式不可避免地引入大量计算,甚至有人将计算物理看做物理学的又一分支。
谈完理论物理,下面说一说实验物理和应用物理。其实这两个领域并没有明显的界限。区别只是实验出的结果应用程度大小的问题。这里所说的实验物理主要是指高能物理( 即粒子物理),他的实验目的不是以应用而是以验证基础理论是否正确为主,并希望通过高能实验的某些新现象来促进基础理论的发展,这个领域最重要,也是最独特实验仪器便是“加速器”。建造加速器需要国家政府投入大量的财力物力,而且短期内在经济上很难得到回报,因此世界上除几个大国外其他国家都对它望而却步。这样就客观上导致了研究高能物理的人与研究理论物理的人一样成为物理学界为数很少的小团体。
谈到这里我不得不提出一个事实,那就是搞物理的人绝大多数是在研究应用物理,即研究领域与人类生活密切相关,比较容易将成果转化为应用技术的领域。在研究的过程中运用应用理论研究的成果来解决人类需要,并能反过来推动应用理论发展。凝聚态物理是现在物理学最大的分支领域,所谓凝聚态是指物质固态和液态的统称。在地球上与人类生活密切相关的物质除了阳光和空气其余都是以凝聚态的形式存在,这足以看出研究凝聚态物理对人类的重要性。凝聚态物理最早的重大成就是半导体的发现及应用,它最后产生的社会价值想必不用我多说了,只需大家看一眼身边这台电脑便见分晓。凝聚态物理有两个大名鼎鼎的热门方向,一个是“超导”,另一个是“纳米”。其他领域诸如软物质,准晶体,磁学等等,很可能酝酿着下一个重大的突破。可以肯定的是,作为物理学最大的分支方向,它已经逐渐发展为整个物理学的主干和中心,几乎有半数左右研究物理的人在这个领域辛勤地探索着。
前面说过原子分子物理目前主要停留在实验物理学阶段,单个原子对人类的意义虽然没有多个原子形成的凝聚态物质重要,但既然一切物质,除光以外都是由原子所构成,这个领域麻雀虽小却是五脏俱全,它与物理学乃至整个自然科学各个分支学科都有非常紧密的联系,而这些交叉领域,又恰恰是其最重要的应用领域。研究化学反应化合物本质的量子化学实质上就是分子物理学,研究DNA大分子的分子生物学实质上也是分子物理学的一个研究领域。由此可见这个学科的发展对其他的自然科学学科有多么重大的意义。
光也许是世界上最神奇的东西了,难怪古希伯莱人认为上帝先创造了光,然后才创造的万物。通常人们爱把所有物质分为狭义的由原子分子组成的“物质”,以及由光子作为载体的“ 能量”。毫不夸张地说物质世界一切能量传递的过程都是靠传递光子完成的(如果广义相对论和量子场论标准模型正确的话)。例如声、光、电、热、磁,声音和热量本质上可还原为电磁相互作用,而电磁相互作用本质上就是靠电荷吸收辐射光子来完成的。因为光是一切能量的载体,量子力学中的“量子”实际上指的就是光量子,即光子。光速是一切速度的极限,光子可以转化为正反粒子对,也许对光的本质的研究会直接触及物质世界最深层次的奥秘。然而光学的发展却完全偏离探索光本性的方向,光学目前是物理学最接近应用领域的一个分支,因为它的应用性太强了,在实际应用中即可成为能量的载体也可成为信息的载体。
激光的发现的重要性丝毫不亚于半导体,它使得光学发展为仅次于凝聚态物理的物理学第二大分支,并且目前比凝聚态物理更接近实际应用。这个分支的基础部分自然还是划归于物理学,但其应用研究部分很可能会继电子之后成为一门从物理学独立出去的学科。
声学是物理学的一个分支,主要是研究声波的产生、接收和传播,以及与各种物质的相互作用等。它在通信技术,无线电电子学,材料科学,海洋技术,环境科学,医学和生命科学等领域有广泛的应用前景。
等离子体是气体在极高温状态下形成的一种电离态,它跟原子分子物理联系的最为密切。虽然浩瀚宇宙中到处弥漫着等离子体构成的恒星,但由于在地球上很少出现,所以对它的研究长期不受重视,直到受控核聚变的研究采用了激光约束等离子体的办法,才使对等离子的研究有了十分重要的意义,一旦受控核聚变应用成功,将一劳永逸解决人类的能源问题。
谈到核聚变,就要说说核物理了,核物理的核子(质子,中子)探索部分,属于前面讲过的高能物理范畴,但它的应用部分对人类的影响却是更加深远。原子弹和氢弹的发明对人类是福是祸,也许只有若干个世纪以后才会有最后的答案。除了巨大的能量之外,核物理的其他一些成果例如核磁共振,以及中子散射等的应用对人类贡献也是十分重要的。
欧美国家习惯上都把天文学(宇宙学)纳入物理学的范畴,二十世纪在天文学领域有重大发现的几个人都获得了诺贝尔物理学奖。爱因斯坦的广义相对论的巨大成就使得天体物理在理论上很难有新的东西出现,只有那神秘的黑洞一直激发着霍金等大师的无尽创造力。这个方向越来越像高能物理,成了一门观察实验物理学,一个深入最微观领域,一个畅游于最宏观的宇宙,他们源源不断地给基础理论物理学家提供数据,共同寻求着万物一理的统一答案。最近由于暗物质和暗能量的出现,宇宙学研究正激发着研究基础理论的大师们酝酿着一个新的突破。
以上简要介绍了现今物理学的现状及发展方向,希望能够对同学们初步了解物理学有所帮助。物理专业的学生并不是出来都要像爱因斯坦一样从事世界最本质规律的探索,也不是都要像建国后老一辈物理家那样去大西北研究核武器。前面已经说过从事基础理论研究和从事核物理研究的人只是在物理专业的人中占有很少很少的一部分,大多数人都从事着凝聚态物理和光学这样与人类生产生活密切相关的领域做应用研究,现代物理学的主干和重心恰恰就是这些应用领域,整个世界都是如此。
本专业发展前景
回顾二十世纪物理学的发展,是在三个方向上前进的。有学者分析,在二十一世纪,物理学也将在这三个方向上继续向前发展。
(1)在微观方向上深入下去。 在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运动规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有能量强大得多的加速器,而这是非常艰巨的任务,所以有学者认为近期内在这个方向上难以有突破性的进展。
(2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说 ,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能优越得更多的、各个波段的太空天文望远镜,这是很艰巨的任务。
必须指出,作为对未知科学领域的一种探索的科学研究,在研究过程中,往往会存在多种观点,有时甚至是相互对立的观点或假设。比如,有学者对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而很多学者相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究了我们这个“宇宙”,当然只能得到近似的结果,把他们的研究结果延伸到“宇宙”,创生了触及遥远的未来,则失误更大。
(3)深入探索各层次间的联系。
这正是统计物理学研究的主要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得巨大发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入到了非线性科学的范畴。相信在二十一世纪非线性科学的发展应有广阔的前景。
上述的物理学的发展前景分析依然局限在现代物理学现有的理论框架内。在二十一世纪,物理学的基本理论应该怎样发展呢?现代物理学的革命将怎样发生呢?有学者认为可能有两个方面值得考虑:
(1)有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”,以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚没定论。
爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想,但是他努力探索了三十年,最终没有成功。有学者对此有不同的观点,根据辩证唯物主义的基本原理,一般认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”
客观世界也可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。或许将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。有学者认为,物理学与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的是关于复杂性研究的非线性科学的发展。
(2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口。
关于物理学的发展前景,不同的学者,会有不同的观点。下面,我们以诺贝尔物理学奖获得者杨振宁教授和李政道教授的观点,来结束我们关于物理学发展前景的展望。
“今后二三十年物理学的成就会远远不及100年前,每一门学科的发展都是有起伏的。在未来相当长的一段时间内,物理学不会在理论上有大的突破。”著名物理学家、诺贝尔奖得主杨振宁在参加2007年科协年会期间,对物理学的发展前景作出了这样的判断。
杨振宁认为,100年前有二三十年是物理学的黄金时代:19世纪末发现了电子、放射性衰变、X光,技术上的发展,实验室里的进步,使理论出现了很大的困惑。爱因斯坦等人提出了相对论、量子力学理论奠定了微观物理学的基础,使物理学进入一个全新的领域。而目前技术有了很大发展,但并没有带来理论上的大困惑,因此物理学不太可能再出现100年前那种飞跃式发展。杨振宁提醒大家,物理界没有更多的重大发现,并不是物理不重要。此时的物理学的很多新领域出现了,为我们打开了很多门,每一个门走进去都能大有作为。
回首20世纪,李政道认为20世纪物理学的发展可以简单归纳为:了解基本粒子就会了解大物质体的构造。而21世纪的物理学发展将是探求整体统一,物理与生物学和其他学科会有极紧密的关系。“在我看来,21世纪物理学的前景是:激发真空;微观和宏观物理的结合;制造象宇宙开始的状态;了解暗物质;了解类星体的能源;了解CP不对称的原理。”
李政道说20世纪的文明是微观的,而21世纪微观和宏观应结合成一体。在一百年前,汤姆逊发现电子,从那以后影响了我们这个世纪的物理思想,即大的是由小的组成的,小的是由更小的组成的,找到了最基本的粒子就知道了最大的构造。这个思想不仅影响了物理学,还影响到本世纪生物学的发展,要知道生物学就应该研究生物的基因,知道基因就可能会知道生命。20世纪是越微小越好,我们觉得小是操纵一切的。但现在我们发现其实并不然。小的粒子,是在很广泛的真空里,而真空很复杂,是个凝聚态,是有构造的。微观粒子和宏观真空实际上是分不开的,这两个必须同时处理。就造计算机而言,是不是越小的就越好呢?可能21世纪的计算机要的是较大的,是个凝聚态单位,这里的信息才更多。21世纪如果把微观和宏观整体地联系起来,这不光是影响物理学,也许会影响到生命的发展。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询